
Oracle Database 10g:
PL/SQL Fundamentals

Volume 1 • Student Guide

D17112GC21

Edition 2.1

December 2006

D48243

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

Authors

Tulika Srivastava
Sunitha Patel

Technical Contributors
and Reviewers

Chaitanya Koratamaddi
Christoph Burandt
Zarko Cesljas
Dairy Chan
Isabelle Cornu
Kathryn Cunningham
Burt Demchick
Joel Goodman
Jonathan Grove
Jessie Ho
Craig Hollister
Alison Holloway
Bryn Llewellyn
Malika Marghadi
Hildegard Mayr
Nancy Greenberg
Miyuki Osato
Nagavalli Pataballa
Srinivas Putrevu
Bryan Roberts
Helen Robertson
Grant Spencer
Lex Van Der Werff

Editors

Richard Wallis
Arijit Ghosh

Graphic Designer

Steve Elwood

Publishers

Nita Brozowski
Srividya Rameshkumar

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface

I Introduction
Objectives I-2
Course Objectives I-3
Course Agenda I-4
The Human Resources (hr) Data Set I-6
Oracle 10g Grid Infrastructure I-8
Oracle Database 10g I-9
Oracle Application Server 10g I-10
Oracle Enterprise Manager 10g Grid Control I-11
Oracle Internet Platform I-12
Summary I-13
Course Practices I-14

1 Introduction to PL/SQL
Objectives 1-2
What is PL/SQL? 1-3
About PL/SQL 1-4
PL/SQL Environment 1-5
Benefits of PL/SQL 1-6
PL/SQL Block Structure 1-9
Block Types 1-11
Programs Constructs 1-13
PL/SQL Programming Environments 1-15
iSQL*Plus Architecture 1-18
Create an Anonymous Block 1-19
Execute an Anonymous Block 1-20
Test the Output of a PL/SQL Block 1-21
Summary 1-23
Practice 1: Overview 1-24

2 Declaring PL/SQL Variables
Objectives 2-2
Use of Variables 2-3
Identifiers 2-4
Handling Variables in PL/SQL 2-5
Declaring and Initializing PL/SQL Variables 2-6
Delimiters in String Literals 2-8
Types of Variables 2-9
Guidelines for Declaring and Initializing PL/SQL Variables 2-11
Guidelines for Declaring PL/SQL Variables 2-12
Scalar Data Types 2-13
Base Scalar Data Types 2-14

Contents

iii

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

BINARY_FLOAT and BINARY_DOUBLE 2-18
Declaring Scalar Variables 2-20
%TYPE Attribute 2-21
Declaring Variables with the %TYPE Attribute 2-23
Declaring Boolean Variables 2-24
Bind Variables 2-25
Printing Bind Variables 2-27
Substitution Variables 2-29
Prompt for Substitution Variables 2-31
Using DEFINE for User Variable 2-32
Composite Data Types 2-33
LOB Data Type Variables 2-34
Summary 2-35
Practice 2: Overview 2-36

3 Writing Executable Statements
Objectives 3-2
Lexical Units in a PL/SQL Block 3-3
PL/SQL Block Syntax and Guidelines 3-5
Commenting Code 3-6
SQL Functions in PL/SQL 3-7
SQL Functions in PL/SQL: Examples 3-8
Data Type Conversion 3-9
Nested Blocks 3-12
Variable Scope and Visibility 3-14
Qualify an Identifier 3-16
Determining Variable Scope 3-17
Operators in PL/SQL 3-18
Programming Guidelines 3-20
Indenting Code 3-21
Summary 3-22
Practice 3: Overview 3-23

4 Interacting with the Oracle Server
Objectives 4-2
SQL Statements in PL/SQL 4-3
SELECT Statements in PL/SQL 4-5
Retrieving Data in PL/SQL 4-9
Naming Conventions 4-11
Manipulating Data Using PL/SQL 4-13
Inserting Data 4-14
Updating Data 4-15
Deleting Data 4-16
Merging Rows 4-17
SQL Cursor 4-19
SQL Cursor Attributes for Implicit Cursors 4-21
Summary 4-23
Practice 4: Overview 4-24

iv

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

5 Writing Control Structures
Objectives 5-2
Controlling Flow of Execution 5-3
IF Statements 5-4
Simple IF Statement 5-6
IF THEN ELSE Statement 5-7
IF ELSIF ELSE Clause 5-8
NULL Values in IF Statements 5-9
CASE Expressions 5-10
CASE Expressions: Example 5-11
Searched CASE Expressions 5-12
CASE Statement 5-13
Handling Nulls 5-14
Logic Tables 5-15
Boolean Conditions 5-16
Iterative Control: LOOP Statements 5-17
Basic Loops 5-18
WHILE Loops 5-20
FOR Loops 5-22
Guidelines for Loops 5-26
Nested Loops and Labels 5-27
Summary 5-29
Practice 5: Overview 5-30

6 Working with Composite Data Types
Objectives 6-2
Composite Data Types 6-3
PL/SQL Records 6-5
Creating a PL/SQL Record 6-6
PL/SQL Record Structure 6-8
%ROWTYPE Attribute 6-9
Advantages of Using %ROWTYPE 6-11
%ROWTYPE Attribute 6-12
Inserting a Record by Using %ROWTYPE 6-13
Updating a Row in a Table by Using a Record 6-14
INDEX BY Tables or Associative Arrays 6-15
Creating an INDEX BY Table 6-16
INDEX BY Table Structure 6-18
Creating an INDEX BY Table 6-19
Using INDEX BY Table Methods 6-20
INDEX BY Table of Records 6-21
INDEX BY Table of Records: Example 6-23
Nested Tables 6-24
VARRAY 6-26
Summary 6-27
Practice 6: Overview 6-28

v

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

7 Using Explicit Cursors
Objectives 7-2
Cursors 7-3
Explicit Cursor Operations 7-4
Controlling Explicit Cursors 7-5
Declaring the Cursor 7-7
Opening the Cursor 7-9
Fetching Data from the Cursor 7-10
Closing the Cursor 7-13
Cursors and Records 7-14
Cursor FOR Loops 7-15
Explicit Cursor Attributes 7-17
%ISOPEN Attribute 7-18
%ROWCOUNT and %NOTFOUND: Example 7-19
Cursor FOR Loops Using Subqueries 7-20
Cursors with Parameters 7-21
FOR UPDATE Clause 7-23
WHERE CURRENT OF Clause 7-25
Cursors with Subqueries 7-26
Summary 7-27
Practice 7: Overview 7-28

8 Handling Exceptions
Objectives 8-2
Example of an Exception 8-3
Handling Exceptions with PL/SQL 8-5
Handling Exceptions 8-6
Exception Types 8-7
Trapping Exceptions 8-8
Guidelines for Trapping Exceptions 8-10
Trapping Predefined Oracle Server Errors 8-11
Trapping Non-Predefined Oracle Server Errors 8-14
Non-Predefined Error 8-15
Functions for Trapping Exceptions 8-16
Trapping User-Defined Exceptions 8-18
Calling Environments 8-20
Propagating Exceptions in a Subblock 8-21
RAISE_APPLICATION_ERROR Procedure 8-22
Summary 8-25
Practice 8: Overview 8-26

9 Creating Stored Procedures and Functions
Objectives 9-2
Procedures and Functions 9-3
Differences Between Anonymous Blocks and Subprograms 9-4
Procedure: Syntax 9-5
Procedure: Example 9-6
Invoking the Procedure 9-8

vi

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Function: Syntax 9-9
Function: Example 9-10
Invoking the Function 9-11
Passing Parameter to the Function 9-12
Invoking the Function with a Parameter 9-13
Summary 9-14
Practice 9: Overview 9-15

Appendix: A Practice Solutions

Appendix: B Table Descriptions and Data

Appendix: C REF Cursors

Appendix: D JDeveloper

Appendix: E Using SQL Developer

Index

Additional Practices

Additional Practice Solutions

vii

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface - 3

Profile
Before You Begin This Course

Before you begin this course, you should have thorough knowledge of SQL and knowledge of any
procedural programming language. Required prerequisite is Oracle Database 10g: SQL
Fundamentals.

How This Course Is Organized
Oracle Database 10g: PL/SQL Fundamentals is an instructor-led course featuring lectures and hands-
on exercises. Online demonstrations and practice sessions reinforce the concepts and skills that are
introduced.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface - 4

Related Publications

Additional Publications
• System release bulletins
• Installation and user’s guides
• read.me files
• International Oracle User’s Group (IOUG) articles
• Oracle Magazine

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface - 5

Typographic Conventions
Following are two lists of typographical conventions that are used specifically within text or within code.

Typographic Conventions Within Text
Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored in the LAST_NAME
column names, column of the employees table.
PL/SQL objects,
schemas

Lowercase, Filenames, where: role is the name of the role italic
variables,
table names,
usernames,
passwords

Initial cap Trigger and Assign a When-Validate-Item trigger to
button names the ORD block.

Choose Cancel.

Italic Books, names of For more information on the subject, see
courses and Oracle9i Server SQL Language Reference
manuals, and Manual.
emphasized
words or phrases Do not save changes to the database.

Quotation marks Lesson module This subject is covered in Lesson 3,
titles referenced “Working with Objects.”
within a course

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Preface - 6

Typographic Conventions (continued)
Typographic Conventions Within Code

Convention Object or Term Example

Uppercase Commands, SELECT userid
functions FROM emp;

Lowercase, Syntax variables CREATE ROLE role;

Initial cap Forms triggers Form module: ORD
Trigger level: S_ITEM.QUANTITY
item
Trigger name: When-Validate-Item
. . .

Lowercase Column names, . . .
table names, OG_ACTIVATE_LAYER
filenames, (OG_GET_LAYER

('prod_pie_layer'))
PL/SQL objects . . .

SELECT last_name
FROM emp;

Bold Text that must DROP USER scott;
be entered by a
user

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Introduction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the objectives of the course
• Describe the course agenda
• Identify the database tables used in the course
• Identify the Oracle products that help you design a

complete business solution

Lesson Aim
This lesson gives you a high-level overview of the course and its flow. You learn about the
database schema and the tables that the course uses. You are also introduced to different
products in the Oracle 10g grid infrastructure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-3

Copyright © 2006, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:
• Understand that PL/SQL provides programming

extensions to SQL
• Write PL/SQL code to interface with the database
• Design PL/SQL program units that execute

efficiently
• Use PL/SQL programming constructs and

conditional control statements
• Handle run-time errors
• Describe stored procedures and functions

Course Objectives
This course presents the basics of PL/SQL. You learn about PL/SQL syntax, blocks, and
programming constructs and about the advantages of integrating SQL with those constructs.
You learn how to write PL/SQL program units and execute them efficiently. In addition, you
learn how to use iSQL*Plus as a development environment for PL/SQL. You also learn how
to design reusable program units, such as procedures and functions. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-4

Copyright © 2006, Oracle. All rights reserved.

Course Agenda

Lessons for the first day:
I. Introduction

1. Introduction to PL/SQL
2. Declaring PL/SQL Variables
3. Creating the Executable Section
4. Interacting with the Oracle Database Server
5. Writing Control Structures

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-5

Copyright © 2006, Oracle. All rights reserved.

Course Agenda

Lessons for the second day:
6. Working with Composite Data Types
7. Using Explicit Cursors
8. Including Exception Handling
9. Creating Stored Procedures and Functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-6

Copyright © 2006, Oracle. All rights reserved.

Human Resources (hr) Data Set

Human Resources (hr) Data Set
The Human Resources (hr) schema is a part of the Oracle sample schema that can be
installed into an Oracle database. As the name indicates, the hr schema has tables that store
all the information about all employees working in the organization. To reduce the
complexity and volume of data, information about employees is stored in more than one
table. For example, if an employee works in the education department, it is not necessary to
store information about that employee as well as the education department in one table.
Instead, you can store employee information in the employees table and department
information in the departments table. This is how the hr schema is built.
The slide shows the hr schema tables and their relationships.
Table Descriptions
employees contains details about each employee working for a department. Some
employees may not be assigned to a department.
departments contains details about the departments in which employees work. Each
department may have a relationship representing the department manager in the
employees table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-7

Human Resources (hr) Data Set (continued)
Table Descriptions (continued)
jobs contains the job types that can be held by each employee.
job_history contains the job histories of employees. If an employee changes
departments within the job or changes jobs within the department, a new row is inserted into
this table with the old job information of that employee.
locations contains the specific addresses of the offices, warehouses, and/or production
sites of a company in a particular country.
regions contains rows representing a region (such as Americas, Asia, and so on).
countries contains rows for countries, each of which are associated with a region.
Note: This lesson introduces you to the various tables in the hr schema. If you want to see
the data stored in each table, refer to Appendix B (“Table Descriptions and Data”).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-8

Copyright © 2006, Oracle. All rights reserved.

Oracle10g Grid Infrastructure

Oracle10g Grid Infrastructure
There are three grid infrastructure products in the Oracle10g release:

• Oracle Database 10g
• Oracle Application Server 10g
• Oracle Enterprise Manager 10g Grid Control

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-9

Copyright © 2006, Oracle. All rights reserved.

Oracle Database 10g

Multimedia

Object Relational Data

Messages

Documents

Oracle Database 10g
Oracle Database 10g is designed to store and manage enterprise information. By using
Oracle Database 10g, management can reduce costs and be assured of a high quality of
service. Reduced configuration and management requirements and automatic SQL tuning
have significantly reduced the cost of maintaining the environment.
Oracle Database 10g contributes to the grid infrastructure products of the Oracle 10g
release. Grid computing is all about computing as a utility. If you are a client, you need not
know where your data resides or which computer stores it. You should be able to request
information or do computations on your data and have it delivered to you.
Oracle Database 10g manages all your data. This is not just the object relational data that
you expect an enterprise database to manage. It can also be unstructured data, such as:

• Spreadsheets
• Word documents
• PowerPoint presentations
• XML
• Multimedia data types (MP3, graphics, video, and so on)

The data does not even have to be in the database. Oracle Database 10g has services through
which you can store metadata about information stored in file systems. You can use the
database server to manage and serve information wherever it is located.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-10

Copyright © 2006, Oracle. All rights reserved.

Oracle Application Server 10g

Business intelligence

Transactional applications

Portals

Integration

Application
development
framework

Application
server

Oracle Application Server 10g
Oracle Application Server 10g provides a complete infrastructure platform for developing
and deploying enterprise applications, integrating many functions including a J2EE and Web
services run-time environment, an enterprise portal, an enterprise integration broker,
business intelligence, Web caching, and identity management services. Oracle Application
Server 10g adds new grid computing features, building on the success of Oracle9i
Application Server, which has hundreds of customers running production enterprise
applications.
Oracle Application Server 10g is the only application server to include services for all the
different server applications that you want to run. It can run:

• Portals and Web sites
• Java transactional applications
• Business intelligence applications

It also provides integration between users, applications, and data throughout your
organization.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-11

Copyright © 2006, Oracle. All rights reserved.

Oracle Enterprise Manager 10g
Grid Control

• Software provisioning
• Application service-level monitoring

Oracle Enterprise Manager 10g Grid Control
Oracle Enterprise Manager 10g Grid Control is a complete, integrated, central management
console and underlying framework that automates administrative tasks across sets of
systems in a grid environment. With Grid Control, you can group multiple hardware nodes,
databases, application servers, and other targets into single logical entities. By executing
jobs, enforcing standard policies, diagnosing and monitoring performance, and automating
many other tasks across a group of targets instead of on many systems individually, Grid
Control enables scaling with a growing grid.
Software Provisioning
With Grid Control, the Oracle 10g platform automates installation, configuration, and
cloning of Oracle Application Server 10g and Oracle Database 10g across multiples nodes.
Oracle Enterprise Manager provides a common framework for software provisioning and
management, allowing administrators to create, configure, deploy, and utilize new servers
with new instances of the application server and database as they are needed.
Application Service-Level Monitoring
Grid Control views the availability and performance of the grid infrastructure as a unified
whole, as a user would experience it, rather than as isolated storage units, processing boxes,
databases, and application servers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-12

Copyright © 2006, Oracle. All rights reserved.

Oracle Internet Platform
Sy

st
em

 m
an

ag
em

en
t

Network services

Databases Application
servers

Internet applications

Any
browser

Any
FTP client

Any
mail client

SQL

PL/SQL

Java

Clients

Presentation and
business logic

Business logic
and data

D
ev

el
op

m
en

t t
oo

ls

Oracle Internet Platform
To develop an e-commerce application, you need a product that can store and manage the
data, a product that can provide a run-time environment for your applications implementing
business logic, and a product that can monitor and diagnose the application after it is
integrated. Oracle 10g grid infrastructure products, discussed earlier, provide all the
necessary components to develop your enterprise. Oracle offers a comprehensive, high-
performance Internet platform for e-commerce and data warehousing. This integrated
platform includes everything needed to develop, deploy, and manage Internet applications.
The Oracle Internet Platform is built on three core pieces:

• Browser-based clients to process presentation
• Application servers to execute business logic and serve presentation logic to browser-

based clients
• Databases to execute database-intensive business logic and server data

Oracle offers a wide variety of the most advanced graphical user interface (GUI) driven
development tools to build business applications, as well as a large suite of software
applications for many areas of business and industry. Stored procedures, functions, and
packages can be written by using SQL, PL/SQL, or Java.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-13

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the course objectives and course agenda
• Identify tables and their relationships in the hr

schema
• Identify the various products in the Oracle 10g

grid infrastructure that enable you to develop a
complete business solution

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals I-14

Course Practices
When you perform the practices in the course, you develop a simple application using an
anonymous block. This anonymous block covers the following:

• Writing a declarative section
• Declaring variables of scalar types
• Declaring variables using the %TYPE attribute
• Writing an executable section
• Accepting user inputs for variables
• Retrieving the values from the database and storing the values in the variables by using

the INTO clause
• Writing a nested block within the executable section
• Using the control structures in the executable section to perform business logic
• Using the INDEX BY table to store values and print them
• Handling exceptions

What Is the Functionality of This Application?
This application is a simple HR application, and only employees working in the Human
Resources department are authorized to use it. In the employees table, only one employee
is in the HR department. Therefore, you can use employee_id for authentication.
The company has decided to provide salary raises to employees in certain departments this
quarter. The raise percentages are determined by the employees’ current salaries.
Employees in the following departments are eligible for raises this quarter:

The salary ranges and the resulting raise percentages are as follows:

Accounting110

Finance100

Sales80

IT60

Marketing20

department_namedepartment_id

3>12000

8> 9500 <12000

15> 6500 < 9500

20< 6500

Raise percentagesalary

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Introduction to PL/SQL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Explain the need for PL/SQL
• Explain the benefits of PL/SQL
• Identify the different types of PL/SQL blocks
• Use iSQL*Plus as a development environment for

PL/SQL
• Output messages in PL/SQL

Lesson Aim
This lesson introduces PL/SQL and PL/SQL programming constructs. You learn about the
benefits of PL/SQL. You also learn to use iSQL*Plus as a development environment for
PL/SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-3

Copyright © 2006, Oracle. All rights reserved.

What Is PL/SQL?

PL/SQL:
• Stands for Procedural Language extension to SQL
• Is Oracle Corporation’s standard data access

language for relational databases
• Seamlessly integrates procedural constructs with

SQL

What Is PL/SQL?
Structured Query Language (SQL) is the primary language used to access and modify data
in relational databases. There are only a few SQL commands, so you can easily learn and
use them. Consider an example:

SELECT first_name, department_id, salary FROM employees;

The SQL statement shown above is simple and straightforward. However, if you want to
alter any data that is retrieved in a conditional manner, you soon encounter the limitations of
SQL.
Consider a slightly modified problem statement: For every employee retrieved, check the
department_id and the salary. Depending on the department’s performance and also the
employee’s salary, you may want to provide varying bonuses to the employees.
Looking at the problem, you know that you have to execute the preceding SQL statement,
collect the data, and apply logic to the data. One solution is to write a SQL statement for
each department to give bonuses to the employees in that department. Remember that you
also have to check the salary component before deciding the bonus amount. This makes it a
little complicated. You now feel that it would be much easier if you had conditional
statements. PL/SQL is designed to meet such requirements. It provides a programming
extension to already-existing SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-4

Copyright © 2006, Oracle. All rights reserved.

About PL/SQL

PL/SQL:
• Provides a block structure for executable units of

code. Maintenance of code is made easier with
such a well-defined structure.

• Provides procedural constructs such as:
– Variables, constants, and types
– Control structures such as conditional statements

and loops
– Reusable program units that are written once and

executed many times

About PL/SQL
PL/SQL defines a block structure for writing code. Maintaining and debugging the code is
made easier with such a structure. One can easily understand the flow and execution of the
program unit.
PL/SQL offers modern software engineering features such as data encapsulation, exception
handling, information hiding, and object orientation. It brings state-of-the-art programming
to the Oracle server and toolset. PL/SQL provides all the procedural constructs that are
available in any third-generation language (3GL).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-5

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Environment

PL/SQL engine

Oracle Database Server

SQL Statement
Executor

Procedural
Statement
Executor

procedural

SQL

PL/SQL
Block

PL/SQL Environment
The slide shows the PL/SQL execution environment in the Oracle database server. A
PL/SQL block contains procedural statements and SQL statements. When you submit the
PL/SQL block to the server, the PL/SQL engine first parses the block. The PL/SQL engine
identifies the procedural statements and SQL statements. It passes the procedural statements
to the procedural statement executor and passes the SQL statements to the SQL statement
executor individually.
The diagram in the slide shows the PL/SQL engine within the database server. The Oracle
application development tools can also contain a PL/SQL engine. The tool passes the blocks
to its local PL/SQL engine. Therefore, all procedural statements are executed locally and
only the SQL statements are executed in the database. The engine used depends on where
the PL/SQL block is being invoked from.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-6

Copyright © 2006, Oracle. All rights reserved.

Benefits of PL/SQL

• Integration of procedural constructs with SQL
• Improved performance

SQL
IF...THEN

SQL
ELSE

SQL
END IF;
SQL

SQL 1

SQL 2
…

Benefits of PL/SQL
Integration of procedural constructs with SQL: The most important advantage of
PL/SQL is the integration of procedural constructs with SQL. SQL is a nonprocedural
language. When you issue a SQL command, your command tells the database server what to
do. However, you cannot specify how to do it. PL/SQL integrates control statements and
conditional statements with SQL, giving you better control of your SQL statements and their
execution. Earlier in this lesson, you saw an example of the need for such integration.
Improved performance: Without PL/SQL, you would not be able to logically combine
SQL statements as one unit. If you have designed an application containing forms, you may
have many different forms with fields in each form. When a form submits the data, you may
have to execute a number of SQL statements. SQL statements are sent to the database one at
a time. This results in many network trips and one call to the database for each SQL
statement, thereby increasing network traffic and reducing performance (especially in a
client/server model).
With PL/SQL, you can combine all these SQL statements into a single program unit. The
application can send the entire block to the database instead of sending the SQL statements
one at a time. This significantly reduces the number of database calls. As the slide
illustrates, if the application is SQL intensive, you can use PL/SQL blocks to group SQL
statements before sending them to the Oracle database server for execution.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-7

Copyright © 2006, Oracle. All rights reserved.

Benefits of PL/SQL

• Modularized program development
• Integration with Oracle tools
• Portability
• Exception handling

Benefits of PL/SQL (continued)
Modularized program development: A basic unit in all PL/SQL programs is the block.
Blocks can be in a sequence or they can be nested in other blocks. Modularized program
development has the following advantages:

• You can group logically related statements within blocks.
• You can nest blocks inside larger blocks to build powerful programs.
• You can break your application into smaller modules. If you are designing a complex

application, PL/SQL allows you to break down the application into smaller,
manageable, and logically related modules.

• You can easily maintain and debug the code.
Integration with tools: The PL/SQL engine is integrated in Oracle tools such as Oracle
Forms, Oracle Reports, and so on. When you use these tools, the locally available PL/SQL
engine processes the procedural statements; only the SQL statements are passed to the
database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-8

Benefits of PL/SQL (continued)
Portability: PL/SQL programs can run anywhere an Oracle server runs, irrespective of the
operating system and the platform. You do not need to tailor them to each new environment.
You can write portable program packages and create libraries that can be reused in different
environments.
Exception handling: PL/SQL enables you to handle exceptions efficiently. You can define
separate blocks for dealing with exceptions. You will learn more about exception handling
later in the course.
PL/SQL shares the same data type system as SQL (with some extensions) and uses the same
expression syntax.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-9

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Block Structure

• DECLARE (optional)
– Variables, cursors, user-defined exceptions

• BEGIN (mandatory)
– SQL statements
– PL/SQL statements

• EXCEPTION (optional)
– Actions to perform

when errors occur
• END; (mandatory)

PL/SQL Block Structure
The slide shows a basic PL/SQL block. A PL/SQL block consists of three sections:

• Declarative (optional): The declarative section begins with the keyword DECLARE
and ends when the executable section starts.

• Executable (required): The executable section begins with the keyword BEGIN and
ends with END. Observe that END is terminated with a semicolon. The executable
section of a PL/SQL block can in turn include any number of PL/SQL blocks.

• Exception handling (optional): The exception section is nested within the executable
section. This section begins with the keyword EXCEPTION.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-10

PL/SQL Block Structure (continued)
In a PL/SQL block, the keywords DECLARE, BEGIN, and EXCEPTION are not terminated
by a semicolon. However, the keyword END, all SQL statements, and PL/SQL statements
must be terminated with a semicolon.

Section Description Inclusion
Declarative
(DECLARE)

Contains declarations of all variables, constants,
cursors, and user-defined exceptions that are
referenced in the executable and exception sections

Optional

Executable
(BEGIN …
END)

Contains SQL statements to retrieve data from the
database; contains PL/SQL statements to manipulate
data in the block

Mandatory

Exception
(EXCEPTION)

Specifies the actions to perform when errors and
abnormal conditions arise in the executable section

Optional

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-11

Copyright © 2006, Oracle. All rights reserved.

Block Types

Anonymous Procedure Function

[DECLARE]

BEGIN
--statements

[EXCEPTION]

END;

PROCEDURE name
IS

BEGIN
--statements

[EXCEPTION]

END;

FUNCTION name
RETURN datatype
IS
BEGIN
--statements
RETURN value;

[EXCEPTION]

END;

Block Types

A PL/SQL program comprises one or more blocks. These blocks can be entirely separate or
nested within another block. There are three types of blocks that make up a PL/SQL
program. They are:

• Anonymous blocks
• Procedures
• Functions

Anonymous blocks: Anonymous blocks are unnamed blocks. They are declared inline at
the point in an application where they are to be executed and are compiled each time the
application is executed. These blocks are not stored in the database. They are passed to the
PL/SQL engine for execution at run time. Triggers in Oracle Developer components consist
of such blocks. These anonymous blocks get executed at run time because they are inline. If
you want to execute the same block again, you have to rewrite the block. You are unable to
invoke or call the block that you wrote earlier because blocks are anonymous and do not
exist after they are executed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-12

Block Types (continued)
Subprograms: Subprograms are complementary to anonymous blocks. They are named
PL/SQL blocks that are stored in the database. Because they are named and stored, you can
invoke them whenever you want (depending on your application). You can declare them
either as procedures or as functions. You typically use a procedure to perform an action and
a function to compute and return a value.
You can store subprograms at the server or application level. Using Oracle Developer
components (Forms, Reports), you can declare procedures and functions as part of the
application (a form or report) and call them from other procedures, functions, and triggers
within the same application whenever necessary.
Note: A function is similar to a procedure, except that a function must return a value.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-13

Copyright © 2006, Oracle. All rights reserved.

Program Constructs

Application triggers

Application packages

Application procedures
or functions

Anonymous blocks

Tools Constructs

Object types

Database triggers

Stored packages

Stored procedures or
functions

Anonymous blocks

Database Server
Constructs

Object types

Program Constructs
The following table outlines a variety of different PL/SQL program constructs that use the
basic PL/SQL block. The program constructs are available based on the environment in
which they are executed.

Program
Construct

Description

Availability

Anonymous
blocks

Unnamed PL/SQL blocks that are embedded
within an application or are issued interactively

All PL/SQL environments

Application
procedures or
functions

Named PL/SQL blocks stored in an Oracle Forms
Developer application or shared library; can
accept parameters and can be invoked repeatedly
by name

Oracle Developer tools
components (for example, Oracle
Forms Developer, Oracle
Reports)

Stored
procedures or
functions

Named PL/SQL blocks stored in the Oracle server;
can accept parameters and can be invoked
repeatedly by name

Oracle server or Oracle Developer
tools

Packages
(application or
stored)

Named PL/SQL modules that group related
procedures, functions, and identifiers

Oracle server and Oracle
Developer tools components (for
example, Oracle Forms
Developer)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-14

Program Constructs (continued)

Program
Construct

Description

Availability

Database triggers PL/SQL blocks that are associated with a database
table and fired automatically when triggered by
various events

Oracle server or any Oracle tool
that issues the DML

Application
triggers

PL/SQL blocks that are associated either with a
database table or system events. They are fired
automatically when triggered by a DML or a
system event respectively.

Oracle Developer tools
components (for example, Oracle
Forms Developer)

Object types User-defined composite data types that encapsulate
a data structure along with the functions and
procedures needed to manipulate the data

Oracle server and Oracle
Developer tools

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-15

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Programming Environments

PL/SQL Programming Environments
Oracle JDeveloper 10g: An integrated development environment (IDE) that provides end-
to-end support for building, testing, and deploying J2EE applications, Web services, and
PL/SQL
You can use Oracle JDeveloper 10g to do the following:

• Establish connection to the database with a user-friendly wizard
• Browse through the objects in the database you are connected to
• Create database users and objects
• Create, run, and debug PL/SQL programs such as procedures, functions, and packages

Note: Oracle JDeveloper 10g and iSQL*Plus can both be used as programming
environments. However, this course uses iSQL*Plus for all demonstrations and practices.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-16

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Programming Environments

iSQL*Plus

PL/SQL Programming Environments (continued)
iSQL*Plus: A browser-based interface to SQL*Plus. You can connect to the local database
or remote database by using iSQL*Plus. It enables you to perform all the operations that you
can perform with the command-line version of SQL*Plus.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-17

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Programming Environments

PL/SQL Programming Environments (continued)
When you log in to iSQL*Plus, you see the screen shown in the slide. Note that you have a
workspace to enter SQL, PL/SQL, and SQL*Plus statements. Click the Execute button to
execute your statements in the workspace. Click the Save Script button when you want to
save all the commands in the workspace in a script file. You can save the script as a *.sql
file. If you want to execute any script file, click the Load Script button and browse to select
the script file. All the statements in the script file are loaded to the workspace and you can
click the Execute button to execute the statements. The Clear button is used to clear the
workspace.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-18

Copyright © 2006, Oracle. All rights reserved.

iSQL*Plus Architecture

iSQL*Plus Architecture
iSQL*Plus uses a three-tier model as shown in the slide. The three tiers in the architecture
are:

• Client tier: The client is a typical HTTP client. Any browser connected to the intranet
or Internet can access the iSQL*Plus user interface.

• Middle tier: The application server forms the middle tier in the iSQL*Plus
architecture. The application server is installed when the database is installed. The
iSQL*Plus server must be installed on the same machine as the application server. The
middle tier is a Java2 Enterprise Edition (J2EE)–compliant application server. The
application server enables communication between iSQL*Plus and the database. The
three tiers in the architecture need not be on the same machine. However, the HTTP
Server and iSQL*Plus Server should be on the same machine. iSQL*Plus manages a
unique identity for each session. The advantage of this is that many concurrent users
can use iSQL*Plus to access the database.

• Database tier: The database tier has the database server. The Oracle Net components
enable communication between the iSQL*Plus Server and the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-19

Copyright © 2006, Oracle. All rights reserved.

Create an Anonymous Block

Type the anonymous block in the iSQL*Plus
workspace:

Create an Anonymous Block
To create an anonymous block using iSQL*Plus, enter the block in the workspace (as shown
in the slide). The block has the declarative section and the executable section. You need not
pay attention to the syntax of statements in the block; you learn the syntax later in the
course. The anonymous block gets the first_name of the employee whose
employee_id is 100 and stores it in a variable called f_name. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-20

Copyright © 2006, Oracle. All rights reserved.

Execute an Anonymous Block

Click the Execute button to execute the anonymous
block:

PL\SQL procedure successfully completed.

Execute an Anonymous Block
Click the Execute button to execute the anonymous block in the workspace. Note that the
message “PL\SQL procedure successfully completed” is displayed after the block is
executed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-21

Copyright © 2006, Oracle. All rights reserved.

Test the Output of a PL/SQL Block

• Enable output in iSQL*Plus with the following
command:
SET SERVEROUTPUT ON

• Use a predefined Oracle package and its
procedure:
– DBMS_OUTPUT.PUT_LINE

SET SERVEROUTPUT ON
…
DBMS_OUTPUT.PUT_LINE(' The First Name of the
Employee is ' || f_name);
…

Test the Output of a PL/SQL Block
In the example shown in the previous slide, we have stored a value in the variable f_name.
However, we have not printed the value. You now learn how to print the value.
PL/SQL does not have built-in input or output functionality. Therefore, we use predefined
Oracle packages for input and output. To generate output, you must:

• Enable output in iSQL*Plus by using the SET SERVEROUTPUT ON command. SET
SERVEROUTPUT ON is a SQL*Plus command that is also supported by iSQL*Plus.

• Use the procedure PUT_LINE of the package DBMS_OUTPUT to display the output.
Pass the value that has to be printed as argument to this procedure (as shown in the
slide). The procedure then outputs the arguments.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-22

Copyright © 2006, Oracle. All rights reserved.

Test the Output of a PL/SQL Block

Test the Output of a PL/SQL Block (continued)
The slide shows the output of the PL/SQL block after the inclusion of the code for
generating output.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-23

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Integrate SQL statements with PL/SQL program

constructs
• Identify the benefits of PL/SQL
• Differentiate different PL/SQL block types
• Use iSQL*Plus as the programming environment

for PL/SQL
• Output messages in PL/SQL

Summary
PL/SQL is a language that has programming features that serve as an extension to SQL.
SQL, which is a nonprocedural language, is made procedural with PL/SQL programming
constructs. PL/SQL applications can run on any platform or operating system on which an
Oracle server runs. In this lesson, you learned how to build basic PL/SQL blocks.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-24

Copyright © 2006, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
• Identifying which PL/SQL blocks execute

successfully
• Creating and executing a simple PL/SQL block

Practice 1: Overview
This practice reinforces the basics of PL/SQL covered in this lesson.

• Exercise 1 is a paper-based exercise in which you identify PL/SQL blocks that execute
successfully.

• Exercise 2 involves creating and executing a simple PL/SQL block.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 1-25

Practice 1
Before you begin this practice, please ensure that you have seen both the viewlets on
iSQL*Plus usage.
The labs folder will be your working directory. You can save your scripts in the labs
folder. Please take the instructor’s help to locate the labs folder for this course. The
solutions for all practices are in the soln folder.

1. Which of the following PL/SQL blocks execute successfully?

a. BEGIN
END;

b. DECLARE
amount INTEGER(10);
END;

c. DECLARE
BEGIN
END;

d. DECLARE
amount INTEGER(10);
BEGIN
DBMS_OUTPUT.PUT_LINE(amount);
END;

2. Create and execute a simple anonymous block that outputs “Hello World.” Execute
and save this script as lab_01_02_soln.sql.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Declaring PL/SQL Variables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify valid and invalid identifiers
• List the uses of variables
• Declare and initialize variables
• List and describe various data types
• Identify the benefits of using the %TYPE attribute
• Declare, use, and print bind variables

Lesson Aim
You have already learned about basic PL/SQL blocks and their sections. In this lesson, you
learn about valid and invalid identifiers. You learn how to declare and initialize variables in
the declarative section of a PL/SQL block. The lesson describes the various data types. You
also learn about the %TYPE attribute and its benefits.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-3

Copyright © 2006, Oracle. All rights reserved.

Use of Variables

Variables can be used for:
• Temporary storage of data
• Manipulation of stored values
• Reusability

SELECT
first_name,
department_id

INTO
emp_fname,
emp_deptno
FROM …

emp_fname

emp_deptno

Jennifer

10

Use of Variables
With PL/SQL you can declare variables and then use them in SQL and procedural
statements.
Variables are mainly used for storage of data and manipulation of stored values. Consider
the SQL statement shown in the slide. The statement retrieves the first_name and
department_id from the table. If you have to manipulate the first_name or the
department_id, then you have to store the retrieved value. Variables are used to
temporarily store the value. You can use the value stored in these variables for processing
and manipulating the data. Variables can store any PL/SQL object, such as variables, types,
cursors, and subprograms.
Reusability is another advantage of declaring variables. After they are declared, variables
can be used repeatedly in an application by referring to them in the statements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-4

Copyright © 2006, Oracle. All rights reserved.

Identifiers

Identifiers are used for:
• Naming a variable
• Providing conventions for variable names

– Must start with a letter
– Can include letters or numbers
– Can include special characters (such as dollar sign,

underscore, and pound sign)
– Must limit the length to 30 characters
– Must not be reserved words

Identifiers
Identifiers are mainly used to provide conventions for naming variables. The rules for
naming a variable are listed in the slide.
What Is the Difference Between a Variable and an Identifier?
Identifiers are names of variables. Variables are storage locations of data. Data is stored in
memory. Variables point to this memory location where data can be read and modified.
Identifiers are used to name PL/SQL objects (such as variables, types, cursors, and
subprograms). Variables are used to store PL/SQL objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-5

Copyright © 2006, Oracle. All rights reserved.

Handling Variables in PL/SQL

Variables are:
• Declared and initialized in the declarative section
• Used and assigned new values in the executable

section
• Passed as parameters to PL/SQL subprograms
• Used to hold the output of a PL/SQL subprogram

Handling Variables in PL/SQL
Declared and Initialized in the Declaration Section
You can declare variables in the declarative part of any PL/SQL block, subprogram, or
package. Declarations allocate storage space for a value, specify its data type, and name the
storage location so that you can reference it. Declarations can also assign an initial value and
impose the NOT NULL constraint on the variable. Forward references are not allowed. You
must declare a variable before referencing it in other statements, including other declarative
statements.
Used and Assigned New Values in the Executable Section
In the executable section, the existing value of the variable can be replaced with the new
value.
Passed as Parameters to PL/SQL Subprograms
Subprograms can take parameters. You can pass variables as parameters to subprograms.
Used to Hold the Output of a PL/SQL Subprogram
You have learned that the only difference between procedures and functions is that functions
must return a value. Variables can be used to hold the value that is returned by a function.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-6

Copyright © 2006, Oracle. All rights reserved.

Declaring and Initializing PL/SQL Variables

Syntax

Examples

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

DECLARE
emp_hiredate DATE;
emp_deptno NUMBER(2) NOT NULL := 10;
location VARCHAR2(13) := 'Atlanta';
c_comm CONSTANT NUMBER := 1400;

Declaring and Initializing PL/SQL Variables
You must declare all PL/SQL identifiers in the declaration section before referencing them
in the PL/SQL block. You have the option of assigning an initial value to a variable (as
shown in the slide). You do not need to assign a value to a variable in order to declare it. If
you refer to other variables in a declaration, you must be sure to declare them separately in a
previous statement.
In the syntax:

identifier Is the name of the variable
CONSTANT Constrains the variable so that its value cannot change (Constants

must be initialized.)
data type Is a scalar, composite, reference, or LOB data type (This course

covers only scalar, composite, and LOB data types.)
NOT NULL Constrains the variable so that it must contain a value (NOT NULL

variables must be initialized.)
expr Is any PL/SQL expression that can be a literal expression, another

variable, or an expression involving operators and functions
Note: In addition to variables, you can also declare cursors and exceptions in the declarative
section. You learn how to declare cursors and exceptions later in the course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-7

Copyright © 2006, Oracle. All rights reserved.

Declaring and Initializing PL/SQL Variables

SET SERVEROUTPUT ON
DECLARE
Myname VARCHAR2(20);

BEGIN
DBMS_OUTPUT.PUT_LINE('My name is: '||Myname);
Myname := 'John';
DBMS_OUTPUT.PUT_LINE('My name is: '||Myname);

END;
/

SET SERVEROUTPUT ON
DECLARE
Myname VARCHAR2(20):= 'John';

BEGIN
Myname := 'Steven';
DBMS_OUTPUT.PUT_LINE('My name is: '||Myname);

END;
/

1

2

Declaring and Initializing PL/SQL Variables (continued)
Examine the two code blocks in the slide.

1. The variable Myname is declared in the declarative section of the block. This variable
can be accessed in the executable section of the same block. A value John is assigned
to the variable in the executable section. String literals must be enclosed in single
quotation marks. If your string has a quotation mark as in “ Today’s Date”, then the
string would be “ Today’s Date”. ‘:=‘ is the assignment operator. The procedure
PUT_LINE is invoked by passing the variable Myname. The value of the variable is
concatenated with the string ‘My name is: ‘. The output of this anonymous block is:

2. In the second block, the variable Myname is declared and initialized in the declarative
section. Myname holds the value John after initialization. This value is manipulated
in the executable section of the block. The output of this anonymous block is:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-8

Copyright © 2006, Oracle. All rights reserved.

Delimiters in String Literals

SET SERVEROUTPUT ON
DECLARE

event VARCHAR2(15);
BEGIN
event := q'!Father's day!';
DBMS_OUTPUT.PUT_LINE('3rd Sunday in June is :
'||event);
event := q'[Mother's day]';
DBMS_OUTPUT.PUT_LINE('2nd Sunday in May is :
'||event);

END;
/

Delimiters in String Literals
If your string contains an apostrophe (identical to a single quotation mark), you must double
the quotation mark, as in the following example:

event VARCHAR2(15):='Father''s day';

The first quotation mark acts as the escape character. This makes your string complicated,
especially if you have SQL statements as strings. You can specify any character that is not
present in the string as delimiter. The slide shows how to use the q' notation to specify the
delimiter. The examples use ‘!’ and ‘[‘ as delimiters. Consider the following example:

event := q'!Father's day!';

You can compare this with the first example on this notes page. You start the string with q'
if you want to use a delimiter. The character following the notation is the delimiter used.
Enter your string after specifying the delimiter, close the delimiter, and close the notation
with a single quotation mark. The following example shows how to use ‘[‘ as a delimiter:

event := q'[Mother's day]';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-9

Copyright © 2006, Oracle. All rights reserved.

Types of Variables

• PL/SQL variables:
– Scalar
– Composite
– Reference
– Large object (LOB)

• Non-PL/SQL variables: Bind variables

Types of Variables
All PL/SQL variables have a data type, which specifies a storage format, constraints, and a
valid range of values. PL/SQL supports five data type categories—scalar, composite,
reference, large object (LOB), and object—that you can use for declaring variables,
constants, and pointers.

• Scalar data types: Scalar data types hold a single value. The value depends on the
data type of the variable. For example, the variable Myname in the example in slide 7
is of type VARCHAR2. Therefore, Myname can hold a string value. PL/SQL also
supports Boolean variables.

• Composite data types: Composite data types contain internal elements that are either
scalar or composite. Record and table are examples of composite data types.

• Reference data types: Reference data types hold values, called pointers, that point to
a storage location.

• LOB data types: LOB data types hold values, called locators, that specify the location
of large objects (such as graphic images) that are stored out of line.

Non-PL/SQL variables include host language variables declared in precompiler programs,
screen fields in Forms applications, and iSQL*Plus host variables. You learn about host
variables later in this lesson.
For more information about LOBs, see the PL/SQL User’s Guide and Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-10

Copyright © 2006, Oracle. All rights reserved.

TRUE

Types of Variables

25-JAN-01

Atlanta256120.08

The soul of the lazy man
desires, and he has nothing;

but the soul of the diligent
shall be made rich.

Types of Variables (continued)
The slide illustrates the following data types:
• TRUE represents a Boolean value.
• 25-JAN-01 represents a DATE.
• The image represents a BLOB.
• The text of the proverb can represent a VARCHAR2 data type or a CLOB.
• 256120.08 represents a NUMBER data type with precision and scale.
• The film reel represents a BFILE.
• The city name Atlanta represents a VARCHAR2.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-11

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Declaring and Initializing
PL/SQL Variables

• Follow naming conventions.
• Use meaningful names for variables.
• Initialize variables designated as NOT NULL and

CONSTANT.
• Initialize variables with the assignment operator

(:=) or the DEFAULT keyword:

• Declare one identifier per line for better readability
and code maintenance.

Myname VARCHAR2(20):='John';

Myname VARCHAR2(20) DEFAULT 'John';

Guidelines for Declaring and Initializing PL/SQL Variables
Here are some guidelines to follow when you declare PL/SQL variables.

• Follow naming conventions: for example, name to represent a variable and c_name
to represent a constant.

• Use meaningful and appropriate names for variables. For example, consider using
salary and sal_with_commission instead of salary1 and salary2.

• If you use the NOT NULL constraint, you must assign a value when you declare the
variable.

• In constant declarations, the keyword CONSTANT must precede the type specifier. The
following declaration names a constant of NUMBER subtype REAL and assigns the
value of 50,000 to the constant. A constant must be initialized in its declaration;
otherwise, you get a compilation error. After initializing a constant, you cannot change
its value.

sal CONSTANT REAL := 50000.00;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-12

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Declaring PL/SQL Variables

• Avoid using column names as identifiers.

DECLARE
employee_id NUMBER(6);

BEGIN
SELECT employee_id
INTO employee_id
FROM employees
WHERE last_name = 'Kochhar';

END;
/

• Use the NOT NULL constraint when the variable
must hold a value.

Guidelines for Declaring PL/SQL Variables
• Initialize the variable to an expression with the assignment operator (:=) or with the

DEFAULT reserved word. If you do not assign an initial value, the new variable
contains NULL by default until you assign a value. To assign or reassign a value to a
variable, you write a PL/SQL assignment statement. It is good programming practice
to initialize all variables.

• Two objects can have the same name only if they are defined in different blocks.
Where they coexist, you can qualify them with labels and use them.

• Avoid using column names as identifiers. If PL/SQL variables occur in SQL
statements and have the same name as a column, the Oracle server assumes that it is
the column that is being referenced. Although the example code in the slide works,
code that is written using the same name for a database table and variable name is not
easy to read or maintain.

• Impose the NOT NULL constraint when the variable must contain a value. You cannot
assign nulls to a variable defined as NOT NULL. The NOT NULL constraint must be
followed by an initialization clause.

pincode NUMBER(15) NOT NULL := 'Oxford';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-13

Copyright © 2006, Oracle. All rights reserved.

Scalar Data Types

• Hold a single value
• Have no internal components

Atlanta

TRUE 25-JAN-01

256120.08

The soul of the lazy man
desires, and he has nothing;

but the soul of the diligent
shall be made rich.

Scalar Data Types
Every constant, variable, and parameter has a data type that specifies a storage format,
constraints, and valid range of values. PL/SQL provides a variety of predefined data types.
For instance, you can choose from integer, floating point, character, Boolean, date,
collection, and LOB types. This chapter covers the basic types that are used frequently in
PL/SQL programs.
A scalar data type holds a single value and has no internal components. Scalar data types can
be classified into four categories: number, character, date, and Boolean. Character and
number data types have subtypes that associate a base type to a constraint. For example,
INTEGER and POSITIVE are subtypes of the NUMBER base type.
For more information and the complete list of scalar data types, refer to the PL/SQL User’s
Guide and Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-14

Copyright © 2006, Oracle. All rights reserved.

Base Scalar Data Types

• CHAR [(maximum_length)]

• VARCHAR2 (maximum_length)

• LONG

• LONG RAW

• NUMBER [(precision, scale)]

• BINARY_INTEGER

• PLS_INTEGER

• BOOLEAN

• BINARY_FLOAT

• BINARY_DOUBLE

Base Scalar Data Types
Data Type Description
CHAR
[(maximum_length)]

Base type for fixed-length character data up to 32,767 bytes. If you do
not specify a maximum length, the default length is set to 1.

VARCHAR2
(maximum_length)

Base type for variable-length character data up to 32,767 bytes. There
is no default size for VARCHAR2 variables and constants.

NUMBER
[(precision, scale)]

Number having precision p and scale s. The precision p can range
from 1 to 38. The scale s can range from –84 to 127.

BINARY_INTEGER Base type for integers between –2,147,483,647 and 2,147,483,647.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-15

Base Scalar Data Types (continued)

Data Type Description
PLS_INTEGER Base type for signed integers between –2,147,483,647 and

2,147,483,647. PLS_INTEGER values require less storage and are
faster than NUMBER values. In Oracle Database 10g, the
PLS_INTEGER and BINARY_INTEGER data types are identical.
The arithmetic operations on PLS_INTEGER and
BINARY_INTEGER values are faster than on NUMBER values.

BOOLEAN Base type that stores one of the three possible values used for
logical calculations: TRUE, FALSE, and NULL.

BINARY_FLOAT New data type introduced in Oracle Database 10g. Represents
floating-point number in IEEE 754 format. Requires 5 bytes to
store the value.

BINARY_DOUBLE New data type introduced in Oracle Database 10g. Represents
floating-point number in IEEE 754 format. Requires 9 bytes to
store the value.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-16

Copyright © 2006, Oracle. All rights reserved.

Base Scalar Data Types

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

Base Scalar Data Types (continued)
Data Type Description
DATE Base type for dates and times. DATE values include the time of day in seconds

since midnight. The range for dates is between 4712 B.C. and 9999 A.D.

TIMESTAMP The TIMESTAMP data type, which extends the DATE data type, stores the year,
month, day, hour, minute, second, and fraction of second. The syntax is
TIMESTAMP[(precision)], where the optional parameter precision
specifies the number of digits in the fractional part of the seconds field. You
cannot use a symbolic constant or variable to specify the precision; you must use
an integer literal in the range
 0 ... 9. The default is 6.

TIMESTAMP WITH
TIME ZONE

The TIMESTAMP WITH TIME ZONE data type, which extends the
TIMESTAMP data type, includes a time-zone displacement. The time-zone
displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly known as Greenwich Mean Time.
The syntax is TIMESTAMP[(precision)] WITH TIME ZONE, where the
optional parameter precision specifies the number of digits in the fractional
part of the seconds field. You cannot use a symbolic constant or variable to
specify the precision; you must use an integer literal in the range
0 ... 9. The default is 6.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-17

Base Scalar Data Types (continued)
Data Type Description
TIMESTAMP WITH
LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE data type, which extends
the TIMESTAMP data type, includes a time-zone displacement. The time-
zone displacement is the difference (in hours and minutes) between local
time and Coordinated Universal Time (UTC), formerly known as Greenwich
Mean Time. The syntax is TIMESTAMP[(precision)] WITH LOCAL
TIME ZONE, where the optional parameter precision specifies the number of
digits in the fractional part of the seconds field. You cannot use a symbolic
constant or variable to specify the precision; you must use an integer literal in
the range 0 ... 9. The default is 6.
This data type differs from TIMESTAMP WITH TIME ZONE in that when
you insert a value into a database column, the value is normalized to the
database time zone, and the time-zone displacement is not stored in the
column. When you retrieve the value, the Oracle server returns the value in
your local session time zone.

INTERVAL YEAR
TO MONTH

You use the INTERVAL YEAR TO MONTH data type to store and
manipulate intervals of years and months. The syntax is INTERVAL
YEAR[(precision)] TO MONTH, where precision specifies the
number of digits in the years field. You cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range
0 … 4. The default is 2.

INTERVAL DAY TO
SECOND

You use the INTERVAL DAY TO SECOND data type to store and
manipulate intervals of days, hours, minutes, and seconds. The syntax is
INTERVAL DAY[(precision1)] TO SECOND[(precision2)],
where precision1 and precision2 specify the number of digits in the
days field and seconds field, respectively. In both cases, you cannot use a
symbolic constant or variable to specify the precision; you must use an
integer literal in the range 0 ... 9. The defaults are 2 and 6, respectively.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-18

Copyright © 2006, Oracle. All rights reserved.

BINARY_FLOAT and BINARY_DOUBLE

• Represent floating point numbers in IEEE 754
format

• Offer better interoperability and operational speed
• Store values beyond the values that the data type

NUMBER can store
• Provide the benefits of closed arithmetic

operations and transparent rounding

BINARY_FLOAT and BINARY_DOUBLE
BINARY_FLOAT and BINARY_DOUBLE are new data types introduced in Oracle database
10g.

• Represent floating point numbers in IEEE 754 format: You can use these data
types for scientific calculations and also for data exchange between programs that
follow the IEEE (Institute of Electrical and Electronics Engineers) format.

• Benefits: Many computer systems support IEEE 754 floating-point operations through
native processor instructions. These types are efficient for intensive computations
involving floating-point data. Interaction with such programs is made easier because
Oracle supports the same format to which these two data types adhere.

• Better interoperability and operational speed: Interoperability is mainly due to the
format of these two data types. These data types improve performance in number-
crunching operations such as processing scientific data.

• Store values beyond Oracle NUMBER: BINARY_FLOAT requires 5 bytes and
BINARY_DOUBLE requires 9 bytes as opposed to Oracle NUMBER, which uses
anywhere between 1 and 22 bytes. These data types meet the demand for a numeric
data type that can store numeric data beyond the range of NUMBER.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-19

BINARY_FLOAT and BINARY_DOUBLE (continued)
• Closed arithmetic operations and transparent rounding: All arithmetic operations

with BINARY_FLOAT and BINARY_DOUBLE are closed; that is, an arithmetic
operation produces a normal or special value. You need not worry about explicit
conversion. For example, multiplying a BINARY_FLOAT number with another
BINARY_FLOAT results in a BINARY_FLOAT number. Dividing a BINARY_FLOAT
by zero is undefined and actually results in the special value Inf (Infinite). Operations
on these data types are subject to rounding, which is transparent to PL/SQL users. The
default mode is rounding to the nearest binary place. Most financial applications
require decimal rounding behavior, whereas purely scientific applications may not.

Example
SET SERVEROUTPUT ON
DECLARE
bf_var BINARY_FLOAT;
bd_var BINARY_DOUBLE;

BEGIN
bf_var := 270/35f;
bd_var := 140d/0.35;
DBMS_OUTPUT.PUT_LINE('bf: '|| bf_var);
DBMS_OUTPUT.PUT_LINE('bd: '|| bd_var);

END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-20

Copyright © 2006, Oracle. All rights reserved.

Declaring Scalar Variables

Examples
DECLARE

emp_job VARCHAR2(9);

count_loop BINARY_INTEGER := 0;

dept_total_sal NUMBER(9,2) := 0;

orderdate DATE := SYSDATE + 7;

c_tax_rate CONSTANT NUMBER(3,2) := 8.25;

valid BOOLEAN NOT NULL := TRUE;

...

Declaring Scalar Variables
The examples of variable declaration shown in the slide are defined as follows.
• emp_job: Variable to store an employee job title
• count_loop: Variable to count the iterations of a loop; initialized to 0
• dept_total_sal: Variable to accumulate the total salary for a department;

initialized to 0
• orderdate: Variable to store the ship date of an order; initialized to one week from

today
• c_tax_rate: Constant variable for the tax rate (which never changes throughout the

PL/SQL block); set to 8.25
• valid: Flag to indicate whether a piece of data is valid or invalid; initialized to TRUE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-21

Copyright © 2006, Oracle. All rights reserved.

%TYPE Attribute

The %TYPE attribute
• Is used to declare a variable according to:

– A database column definition
– Another declared variable

• Is prefixed with:
– The database table and column
– The name of the declared variable

%TYPE Attribute
PL/SQL variables are usually declared to hold and manipulate data stored in a database.
When you declare PL/SQL variables to hold column values, you must ensure that the
variable is of the correct data type and precision. If it is not, a PL/SQL error occurs during
execution. If you have to design large subprograms, this can be time consuming
and error prone.
Rather than hard-coding the data type and precision of a variable, you can use the %TYPE
attribute to declare a variable according to another previously declared variable or database
column. The %TYPE attribute is most often used when the value stored in the variable is
derived from a table in the database. When you use the %TYPE attribute to declare a
variable, you should prefix it with the database table and column name. If you refer to a
previously declared variable, prefix the variable name to the attribute.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-22

%TYPE Attribute (continued)
Advantages of the %TYPE Attribute

• You can avoid errors caused by data type mismatch or wrong precision.
• You can avoid hard-coding the data type of a variable.
• You need not change the variable declaration if the column definition changes. If you

have already declared some variables for a particular table without using the %TYPE
attribute, the PL/SQL block may throw errors if the column for which the variable is
declared is altered. When you use the %TYPE attribute, PL/SQL determines the data
type and size of the variable when the block is compiled. This ensures that such a
variable is always compatible with the column that is used to populate it.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-23

Copyright © 2006, Oracle. All rights reserved.

Declaring Variables
with the %TYPE Attribute

Syntax

Examples

...
emp_lname employees.last_name%TYPE;
balance NUMBER(7,2);
min_balance balance%TYPE := 1000;

...

identifier table.column_name%TYPE;

Declaring Variables with the %TYPE Attribute
Declare variables to store the last name of an employee. The variable emp_lname is
defined to be of the same data type as the last_name column in the employees table.
The %TYPE attribute provides the data type of a database column.
Declare variables to store the balance of a bank account, as well as the minimum balance,
which is 1,000. The variable min_balance is defined to be of the same data type as the
variable balance. The %TYPE attribute provides the data type of a variable.
A NOT NULL database column constraint does not apply to variables that are declared using
%TYPE. Therefore, if you declare a variable using the %TYPE attribute that uses a database
column defined as NOT NULL, you can assign the NULL value to the variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-24

Copyright © 2006, Oracle. All rights reserved.

Declaring Boolean Variables

• Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

• Conditional expressions use the logical operators
AND and OR and the unary operator NOT to check
the variable values.

• The variables always yield TRUE, FALSE, or NULL.
• Arithmetic, character, and date expressions can

be used to return a Boolean value.

Declaring Boolean Variables
With PL/SQL, you can compare variables in both SQL and procedural statements. These
comparisons, called Boolean expressions, consist of simple or complex expressions
separated by relational operators. In a SQL statement, you can use Boolean expressions to
specify the rows in a table that are affected by the statement. In a procedural statement,
Boolean expressions are the basis for conditional control. NULL stands for a missing,
inapplicable, or unknown value.

Examples
emp_sal1 := 50000;
emp_sal2 := 60000;

The following expression yields TRUE:
emp_sal1 < emp_sal2

Declare and initialize a Boolean variable:
DECLARE
flag BOOLEAN := FALSE;
BEGIN
flag := TRUE;
END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-25

Copyright © 2006, Oracle. All rights reserved.

Bind Variables

Bind variables are:
• Created in the environment
• Also called host variables
• Created with the VARIABLE keyword
• Used in SQL statements and PL/SQL blocks
• Accessed even after the PL/SQL block is executed
• Referenced with a preceding colon

Bind Variables
Bind variables are variables that you create in a host environment. For this reason, they are
sometimes called host variables.
Uses of Bind Variables
Bind variables are created in the environment and not in the declarative section of a PL/SQL
block. Variables declared in a PL/SQL block are available only when you execute the block.
After the block is executed, the memory used by the variable is freed. However, bind
variables are accessible even after the block is executed. When created, therefore, bind
variables can be used and manipulated by multiple subprograms. They can be used in SQL
statements and PL/SQL blocks just like any other variable. These variables can be passed as
run-time values into or out of PL/SQL subprograms.
Creating Bind Variables
To create a bind variable in iSQL*Plus or in SQL*Plus, use the VARIABLE command.
For example, you declare a variable of type NUMBER and VARCHAR2 as follows:

VARIABLE return_code NUMBER
VARIABLE return_msg VARCHAR2(30)

Both SQL*Plus and iSQL*Plus can reference the bind variable, and iSQL*Plus can display
its value through the SQL*Plus PRINT command.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-26

Bind Variables (continued)
Example
You can reference a bind variable in a PL/SQL program by preceding the variable with a
colon:

VARIABLE result NUMBER
BEGIN
SELECT (SALARY*12) + NVL(COMMISSION_PCT,0) INTO :result
FROM employees WHERE employee_id = 144;

END;
/
PRINT result

Note: If you are creating a bind variable of type NUMBER, you cannot specify the precision
and scale. However, you can specify the size for character strings. An Oracle NUMBER is
stored in the same way regardless of the dimension. The Oracle server uses the same number
of bytes to store 7, 70, and .0734. It is not practical to calculate the size of the Oracle
number representation from the number format, so the code always allocates the bytes
needed. With character strings, the size is required from the user so that the required number
of bytes can be allocated.
Printing Bind Variables from the Environment
To display the current value of bind variables in the iSQL*Plus environment, use the PRINT
command. However, PRINT cannot be used inside a PL/SQL block because it is an
iSQL*Plus command. Note how the variable result is printed using the PRINT command
in the code block shown above.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-27

Copyright © 2006, Oracle. All rights reserved.

Printing Bind Variables

Example
VARIABLE emp_salary NUMBER
BEGIN

SELECT salary INTO :emp_salary
FROM employees WHERE employee_id = 178;

END;
/
PRINT emp_salary
SELECT first_name, last_name FROM employees
WHERE salary=:emp_salary;

Printing Bind Variables
In iSQL*Plus, you can display the value of a bind variable by using the PRINT command.
When you execute the PL/SQL block shown in the slide, you see the following output when
the PRINT command executes.

emp_salary is a bind variable. You can now use this variable in any SQL statement or
PL/SQL program. Note the SQL statement that uses the bind variable. The output of the
SQL statement is:

Note: To display all bind variables, use the PRINT command without a variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-28

Copyright © 2006, Oracle. All rights reserved.

Printing Bind Variables

Example
VARIABLE emp_salary NUMBER
SET AUTOPRINT ON
BEGIN

SELECT salary INTO :emp_salary
FROM employees WHERE employee_id = 178;

END;
/

Printing Bind Variables (continued)
Use the SET AUTOPRINT ON command to automatically display the bind variables used
in a successful PL/SQL block.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-29

Copyright © 2006, Oracle. All rights reserved.

Substitution Variables

• Are used to get user input at run time
• Are referenced within a PL/SQL block with a

preceding ampersand
• Are used to avoid hard-coding values that can be

obtained at run time
VARIABLE emp_salary NUMBER

SET AUTOPRINT ON

DECLARE

empno NUMBER(6):=&empno;

BEGIN

SELECT salary INTO :emp_salary

FROM employees WHERE employee_id = empno;

END;

/

Substitution Variables
In the iSQL*Plus environment, iSQL*Plus substitution variables can be used to pass run-
time values into a PL/SQL block. You can reference substitution variables in SQL
statements (and within a PL/SQL block) with a preceding ampersand. The text values are
substituted into the PL/SQL block before the PL/SQL block is executed. Therefore, you
cannot substitute different values for the substitution variables by using a loop. Even if you
include the variable in a loop, you are prompted only once to enter the value. Only one value
will replace the substitution variable.
When you execute the block in the slide, iSQL*Plus prompts you to enter a value for
empno, which is the substitution variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-30

Copyright © 2006, Oracle. All rights reserved.

Substitution Variables

1

2

3

Substitution Variables (continued)
1. When you execute the block in the previous slide, iSQL*Plus prompts you to enter a

value for empno, which is the substitution variable. By default, the prompt message is
“Enter value for <substitution variable>.” Enter a value as shown in the slide and click
the Continue button.

2. You see the output shown in the slide. Note that iSQL*Plus prints both the old value
and the new value for the substitution variable. You can disable this behavior by using
the SET VERIFY OFF command.

3. This is the output after using the SET VERIFY OFF command.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-31

Copyright © 2006, Oracle. All rights reserved.

Prompt for Substitution Variables

SET VERIFY OFF

VARIABLE emp_salary NUMBER

ACCEPT empno PROMPT 'Please enter a valid employee

number: '

SET AUTOPRINT ON

DECLARE

empno NUMBER(6):= &empno;

BEGIN

SELECT salary INTO :emp_salary FROM employees

WHERE employee_id = empno;

END;

/

Prompt for Substitution Variables
The default prompt message in the preceding slide was “Enter value for <substitution
variable>.”
Use the PROMPT command to change the message (as shown in this slide). This is an
iSQL*Plus command and therefore cannot be included in the PL/SQL block. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-32

Copyright © 2006, Oracle. All rights reserved.

SET VERIFY OFF
DEFINE lname= Urman
DECLARE
fname VARCHAR2(25);

BEGIN
SELECT first_name INTO fname FROM employees
WHERE last_name='&lname';

END;
/

Using DEFINE for a User Variable

Example

Using DEFINE for a User Variable
The DEFINE command specifies a user variable and assigns it a CHAR value. You can
define variables of CHAR data type only. Even though you enter the number 50000,
iSQL*Plus assigns a CHAR value to a variable consisting of the characters 5,0,0,0, and 0.
You can reference such variables with a preceding ampersand (&), as shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-33

Copyright © 2006, Oracle. All rights reserved.

Composite Data Types

TRUE 23-DEC-98 ATLANTA

1 5000

2 2345

3 12

4 3456

1 SMITH

2 JONES

3 NANCY

4 TIM

PL/SQL table structure PL/SQL table structure

PLS_INTEGER

VARCHAR2

PLS_INTEGER

NUMBER

Composite Data Types
A scalar type has no internal components. A composite type has internal components that
can be manipulated individually. Composite data types (also known as collections) are of
TABLE, RECORD, NESTED TABLE, and VARRAY types.
Use the TABLE data type to reference and manipulate collections of data as a whole object.
Use the RECORD data type to treat related but dissimilar data as a logical unit. NESTED
TABLE and VARRAY data types are covered in the Oracle Database 10g: Develop PL/SQL
Program Units course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-34

Copyright © 2006, Oracle. All rights reserved.

LOB Data Type Variables

Book
(CLOB)

Photo
(BLOB)

Movie
(BFILE)

NCLOB

LOB Data Type Variables
Large objects (LOBs) are meant to store a large amount of data. A database column can be
of the LOB category. With the LOB category of data types (BLOB, CLOB, and so on),
you can store blocks of unstructured data (such as text, graphic images, video clips, and
sound wave forms) up to 4 GB in size. LOB data types allow efficient, random, piecewise
access to the data and can be attributes of an object type.

• The character large object (CLOB) data type is used to store large blocks of character
data in the database.

• The binary large object (BLOB) data type is used to store large unstructured or
structured binary objects in the database. When you insert or retrieve such data to and
from the database, the database does not interpret the data. External applications that
use this data must interpret the data.

• The binary file (BFILE) data type is used to store large binary files. Unlike other
LOBS, BFILES are not stored in the database. BFILEs are stored outside the
database. They could be operating system files. Only a pointer to the BFILE is stored
in the database.

• The national language character large object (NCLOB) data type is used to store large
blocks of single-byte or fixed-width multibyte NCHAR unicode data in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-35

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Recognize valid and invalid identifiers
• Declare variables in the declarative section of a

PL/SQL block
• Initialize variables and use them in the executable

section
• Differentiate between scalar and composite data

types
• Use the %TYPE attribute
• Use bind variables

Summary
An anonymous PL/SQL block is a basic, unnamed unit of a PL/SQL program. It consists of
a set of SQL or PL/SQL statements to perform a logical function. The declarative part is the
first part of a PL/SQL block and is used for declaring objects such as variables, constants,
cursors, and definitions of error situations called exceptions.
In this lesson, you learned how to declare variables in the declarative section. You saw some
of the guidelines for declaring variables. You learned how to initialize variables when you
declare them.
The executable part of a PL/SQL block is the mandatory part and contains SQL and PL/SQL
statements for querying and manipulating data. You learned how to initialize variables in the
executable section and also how to utilize them and manipulate the values of variables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-36

Copyright © 2006, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
• Determining valid identifiers
• Determining valid variable declarations
• Declaring variables within an anonymous block
• Using the %TYPE attribute to declare variables
• Declaring and printing a bind variable
• Executing a PL/SQL block

Practice 2: Overview
Exercises 1, 2, and 3 are paper based.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-37

Practice 2
Note: It is recommended to use iSQL*Plus for this practice.

1. Identify valid and invalid identifier names:
a. today
b. last_name
c. today’s_date
d. Number_of_days_in_February_this_year
e. Isleap$year
f. #number
g. NUMBER#
h. number1to7

2. Identify valid and invalid variable declaration and initialization:
a. number_of_copies PLS_INTEGER;
b. printer_name constant VARCHAR2(10);
c. deliver_to VARCHAR2(10):=Johnson;
d. by_when DATE:= SYSDATE+1;

3. Examine the following anonymous block and choose the appropriate statement.
SET SERVEROUTPUT ON
DECLARE
fname VARCHAR2(20);
lname VARCHAR2(15) DEFAULT 'fernandez';

BEGIN
DBMS_OUTPUT.PUT_LINE(FNAME ||' ' ||lname);

END;
/

a. The block will execute successfully and print ‘fernandez’
b. The block will give an error because the fname variable is used without

initializing.
c. The block will execute successfully and print ‘null fernandez’
d. The block will give an error because you cannot use the DEFAULT keyword to

initialize a variable of type VARCHAR2.
e. The block will give an error because the variable FNAME is not declared.

4. Create an anonymous block. In iSQL*Plus, load the script lab_01_02_soln.sql,
which you created in question 2 of practice 1.

a. Add a declarative section to this PL/SQL block. In the declarative section,
declare the following variables:

1. Variable today of type DATE. Initialize today with SYSDATE.
2. Variable tomorrow of type today. Use %TYPE attribute to declare this

variable.
b. In the executable section initialize the variable tomorrow with an expression,

which calculates tomorrow’s date (add one to the value in today). Print the
value of today and tomorrow after printing ‘Hello World’

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 2-38

Practice 2 (continued)
c. Execute and save this script as lab_02_04_soln.sql. Sample output is

shown below.

5. Edit the lab_02_04_soln.sql script.
a. Add code to create two bind variables.

Create bind variables basic_percent and pf_percent of type NUMBER.
b. In the executable section of the PL/SQL block assign the values 45 and 12 to

basic_percent and pf_percent respectively.
c. Terminate the PL/SQL block with “/” and display the value of the bind variables

by using the PRINT command.
d. Execute and save your script file as lab_02_05_soln.sql. Sample output is

shown below.

Click the Next Page button.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Writing Executable Statements

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify lexical units in a PL/SQL block
• Use built-in SQL functions in PL/SQL
• Describe when implicit conversions take place and

when explicit conversions have to be dealt with
• Write nested blocks and qualify variables with

labels
• Write readable code with appropriate indentations

Lesson Aim
You have learned how to declare variables and write executable statements in a PL/SQL
block. In this lesson, you learn how lexical units make up a PL/SQL block. You learn to
write nested blocks. You also learn about the scope and visibility of variables in the nested
blocks and about qualifying them with labels.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-3

Copyright © 2006, Oracle. All rights reserved.

Lexical Units in a PL/SQL Block

Lexical units:
• Are building blocks of any PL/SQL block
• Are sequences of characters including letters,

numerals, tabs, spaces, returns, and symbols
• Can be classified as:

– Identifiers
– Delimiters
– Literals
– Comments

Lexical Units in a PL/SQL Block
Lexical units include letters, numerals, special characters, tabs, spaces, returns, and symbols.

• Identifiers: Identifiers are the names given to PL/SQL objects. You have learned to
identify valid and invalid identifiers. Recall that keywords cannot be used as
identifiers.
Quoted Identifiers:

- Make identifiers case sensitive
- Include characters such as spaces
- Use reserved words

Examples:
"begin date" DATE;
"end date" DATE;
"exception thrown" BOOLEAN DEFAULT TRUE;

All subsequent usage of these variables should have double quotation marks.
• Delimiters: Delimiters are symbols that have special meaning. You have already

learned that the semicolon (;) is used to terminate a SQL or PL/SQL statement.
Therefore, ; is the best example of a delimiter.
For more information, please refer to the PL/SQL User’s Guide and Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-4

Lexical Units in a PL/SQL Block (continued)
• Delimiters (continued)

Delimiters are simple or compound symbols that have special meaning in PL/SQL.
Simple Symbols

Compound Symbols

Note: This is only a subset and not a complete list of delimiters.
• Literals: Any value that is assigned to a variable is a literal. Any character, numeral,

Boolean, or date value that is not an identifier is a literal. Literals are classified as:
- Character literals: All string literals have the data type CHAR and are therefore

called character literals (for example, John, 12C, 1234, and 12-JAN-1923).
- Numeric literals: A numeric literal represents an integer or real value (for

example, 428 and 1.276).
- Boolean literals: Values that are assigned to Boolean variables are Boolean

literals. TRUE, FALSE, and NULL are Boolean literals or keywords.
• Comments: It is good programming practice to explain what a piece of code is trying

to achieve. When you include the explanation in a PL/SQL block, the compiler cannot
interpret these instructions. There should be a way in which you can indicate that these
instructions need not be compiled. Comments are mainly used for this purpose. Any
instruction that is commented is not interpreted by the compiler.

- Two hyphens (--) are used to comment a single line.
- The beginning and ending comment delimiters (/* and */) are used to comment

multiple lines.

Symbol Meaning
+ Addition operator
- Subtraction/negation operator
* Multiplication operator
/ Division operator
= Equality operator
@ Remote access indicator
; Statement terminator

Symbol Meaning
<> Inequality operator
!= Inequality operator
|| Concatenation operator
-- Single-line comment indicator
/* Beginning comment delimiter
*/ Ending comment delimiter
:= Assignment operator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-5

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Block Syntax and Guidelines

• Literals:
– Character and date literals must be enclosed in

single quotation marks.

– Numbers can be simple values or scientific
notation.

• Statements can continue over several lines.

name := 'Henderson';

PL/SQL Block Syntax and Guidelines
A literal is an explicit numeric, character string, date, or Boolean value that is not
represented by an identifier.

• Character literals include all the printable characters in the PL/SQL character set:
letters, numerals, spaces, and special symbols.

• Numeric literals can be represented either by a simple value (for example, –32.5) or
in scientific notation (for example, 2E5 means 2 * 105 = 200,000).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-6

Copyright © 2006, Oracle. All rights reserved.

Commenting Code

• Prefix single-line comments with two hyphens (--).
• Place multiple-line comments between the symbols

/* and */.

Example
DECLARE
...
annual_sal NUMBER (9,2);
BEGIN -- Begin the executable section

/* Compute the annual salary based on the
monthly salary input from the user */

annual_sal := monthly_sal * 12;
END; -- This is the end of the block
/

Commenting Code
You should comment code to document each phase and to assist debugging. Comment the
PL/SQL code with two hyphens (--) if the comment is on a single line, or enclose the
comment between the symbols /* and */ if the comment spans several lines.
Comments are strictly informational and do not enforce any conditions or behavior on logic
or data. Well-placed comments are extremely valuable for code readability and future code
maintenance. In the example in the slide, the lines enclosed within /* and */ indicate a
comment that explains the following code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-7

Copyright © 2006, Oracle. All rights reserved.

SQL Functions in PL/SQL

• Available in procedural statements:
– Single-row number
– Single-row character
– Data type conversion
– Date
– Timestamp
– GREATEST and LEAST
– Miscellaneous functions

• Not available in procedural statements:
– DECODE

– Group functions

SQL Functions in PL/SQL
SQL provides a number of predefined functions that can be used in SQL statements. Most of
these functions are valid in PL/SQL expressions.
The following functions are not available in procedural statements:
• DECODE
• Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and VARIANCE

Group functions apply to groups of rows in a table and therefore are available only in
SQL statements in a PL/SQL block.

The functions mentioned here are only a subset of the complete list.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-8

Copyright © 2006, Oracle. All rights reserved.

SQL Functions in PL/SQL: Examples

• Get the length of a string:

• Convert the employee name to lowercase:

desc_size INTEGER(5);
prod_description VARCHAR2(70):='You can use this
product with your radios for higher frequency';

-- get the length of the string in prod_description
desc_size:= LENGTH(prod_description);

emp_name:= LOWER(emp_name);

SQL Functions in PL/SQL: Examples
SQL functions help you to manipulate data. They are grouped into the following categories:

• Number
• Character
• Conversion
• Date
• Miscellaneous

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-9

Copyright © 2006, Oracle. All rights reserved.

Data Type Conversion

• Convert data to comparable data types
• Are of two types:

– Implicit conversions
– Explicit conversions

• Some conversion functions:
– TO_CHAR

– TO_DATE

– TO_NUMBER

– TO_TIMESTAMP

Data Type Conversion
In any programming language, converting one data type to another is a common
requirement. PL/SQL can handle such conversions with scalar data types. Data type
conversions can be of two types:
Implicit conversions: PL/SQL attempts to convert data types dynamically if they are mixed
in a statement. Consider the following example:

DECLARE
salary NUMBER(6):=6000;
sal_hike VARCHAR2(5):='1000';
total_salary salary%TYPE;
BEGIN
total_salary:=salary+sal_hike;
END;
/

In the example shown, the variable sal_hike is of type VARCHAR2. While calculating the
total salary, PL/SQL first converts sal_hike to NUMBER and then performs the operation.
The result is of the NUMBER type.
Implicit conversions can be between:

• Characters and numbers
• Characters and dates

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-10

Data Type Conversion (continued)
Explicit conversions: To convert values from one data type to another, use built-in
functions. For example, to convert a CHAR value to a DATE or NUMBER value, use
TO_DATE or TO_NUMBER, respectively.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-11

Copyright © 2006, Oracle. All rights reserved.

Data Type Conversion

date_of_joining DATE:= '02-Feb-2000';

date_of_joining DATE:= 'February 02,2000';

date_of_joining DATE:= TO_DATE('February
02,2000','Month DD, YYYY');

1

2

3

Data Type Conversion (continued)
Implicit and explicit conversions of the DATE data type:

1. This example of implicit conversion assigns the date date_of_joining.
2. PL/SQL gives you an error because the date that is being assigned is not in the default

format.
3. Use the TO_DATE function to explicitly convert the given date in a particular format

and assign it to the DATE data type variable date_of_joining.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-12

Copyright © 2006, Oracle. All rights reserved.

Nested Blocks

PL/SQL blocks can be nested.
• An executable section (BEGIN

… END) can contain nested
blocks.

• An exception section can
contain nested blocks.

Nested Blocks
One of the advantages of PL/SQL (compared to SQL) is the ability to nest statements.
You can nest blocks wherever an executable statement is allowed, thus making the nested
block a statement. If your executable section has code for many logically related
functionalities to support multiple business requirements, you can divide the executable
section into smaller blocks. The exception section can also contain nested blocks. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-13

Copyright © 2006, Oracle. All rights reserved.

Nested Blocks

DECLARE
outer_variable VARCHAR2(20):='GLOBAL VARIABLE';
BEGIN
DECLARE
inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN
DBMS_OUTPUT.PUT_LINE(inner_variable);
DBMS_OUTPUT.PUT_LINE(outer_variable);
END;
DBMS_OUTPUT.PUT_LINE(outer_variable);
END;
/

Example

Nested Blocks (continued)
The example shown in the slide has an outer (parent) block and a nested (child) block. The
variable outer_variable is declared in the outer block and the variable
inner_variable is declared in the inner block.
outer_variable is local to the outer block but global to the inner block. When you
access this variable in the inner block, PL/SQL first looks for a local variable in the inner
block with that name. There is no variable with the same name in the inner block, so
PL/SQL looks for the variable in the outer block. Therefore, outer_variable is
considered the global variable for all the enclosing blocks. You can access this variable in
the inner block as shown in the slide. Variables declared in a PL/SQL block are considered
local to that block and global to all its subblocks.
The inner_variable variable is local to the inner block and is not global because the
inner block does not have any nested blocks. This variable can be accessed only within the
inner block. If PL/SQL does not find the variable declared locally, it looks upward in the
declarative section of the parent blocks. PL/SQL does not look downward in the child
blocks.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-14

Copyright © 2006, Oracle. All rights reserved.

Variable Scope and Visibility

DECLARE
father_name VARCHAR2(20):='Patrick';
date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE
child_name VARCHAR2(20):='Mike';
date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);

END;
/

1

2

Variable Scope and Visibility
The output of the block shown in the slide is as follows:

Examine the date of birth that is printed for father and child.
The scope of a variable is the portion of the program in which the variable is declared and is
accessible.
The visibility of a variable is the portion of the program where the variable can be accessed
without using a qualifier.
Scope

• The variables father_name and date_of_birth are declared in the outer block.
These variables have the scope of the block in which they are declared and accessible.
Therefore, the scope of these variables is limited to the outer block.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-15

Variable Scope and Visibility (continued)
Scope (continued)

• The variables child_name and date_of_birth are declared in the inner block or
the nested block. These variables are accessible only within the nested block and are
not accessible in the outer block. When a variable is out of scope, PL/SQL frees the
memory used to store the variable; therefore, these variables cannot be referenced.

Visibility
• The date_of_birth variable declared in the outer block has the scope even in the

inner block. However, this variable is not visible in the inner block because the inner
block has a local variable with the same name.

1. Examine the code in the executable section of the PL/SQL block. You can print
the father’s name, the child’s name, and the date of birth. Only the child’s date of
birth can be printed here because the father’s date of birth is not visible.

2. The father’s date of birth is visible here and therefore can be printed.
You cannot have variables with the same name in a block. However, you can declare
variables with the same name in two different blocks (nested blocks). The two items
represented by the identifiers are distinct; changes in one do not affect the other.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-16

Copyright © 2006, Oracle. All rights reserved.

Qualify an Identifier

<<outer>>
DECLARE
father_name VARCHAR2(20):='Patrick';
date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE
child_name VARCHAR2(20):='Mike';
date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '

||outer.date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||child_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);

END;
END;
/`

Qualify an Identifier
A qualifier is a label given to a block. You can use a qualifier to access the variables that
have scope but are not visible. Examine the code: You can now print the father’s date of
birth and the child’s date of birth in the inner block. The outer block is labeled outer. You
can use this label to access the date_of_birth variable declared in the outer block.
Because labeling is not limited to the outer block, you can label any block. The output of the
code in the slide is the following:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-17

Copyright © 2006, Oracle. All rights reserved.

Determining Variable Scope

<<outer>>
DECLARE

sal NUMBER(7,2) := 60000;
comm NUMBER(7,2) := sal * 0.20;
message VARCHAR2(255) := ' eligible for commission';

BEGIN
DECLARE

sal NUMBER(7,2) := 50000;
comm NUMBER(7,2) := 0;
total_comp NUMBER(7,2) := sal + comm;

BEGIN
message := 'CLERK not'||message;
outer.comm := sal * 0.30;

END;
message := 'SALESMAN'||message;

END;
/

1

2

Determining Variable Scope
Evaluate the PL/SQL block in the slide. Determine each of the following values according to
the rules of scoping:

1. Value of MESSAGE at position 1
2. Value of TOTAL_COMP at position 2
3. Value of COMM at position 1
4. Value of outer.COMM at position 1
5. Value of COMM at position 2
6. Value of MESSAGE at position 2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-18

Copyright © 2006, Oracle. All rights reserved.

Operators in PL/SQL

• Logical
• Arithmetic
• Concatenation
• Parentheses to control order

of operations

• Exponential operator (**)

Same as in SQL}

Operators in PL/SQL
The operations in an expression are performed in a particular order depending on their
precedence (priority). The following table shows the default order of operations from high
priority to low priority:

Operator Operation
** Exponentiation
+, - Identity, negation
*, / Multiplication, division
+, -, || Addition, subtraction, concatenation
=, <, >, <=, >=, <>, !=, ~=, ^=,
IS NULL, LIKE, BETWEEN, IN

Comparison

NOT Logical negation
AND Conjunction
OR Inclusion

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-19

Copyright © 2006, Oracle. All rights reserved.

Operators in PL/SQL

Examples
• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a
value.

loop_count := loop_count + 1;

good_sal := sal BETWEEN 50000 AND 150000;

valid := (empno IS NOT NULL);

Operators in PL/SQL (continued)
When working with nulls, you can avoid some common mistakes by keeping in mind the
following rules:

• Comparisons involving nulls always yield NULL.
• Applying the logical operator NOT to a null yields NULL.
• In conditional control statements, if the condition yields NULL, its associated sequence

of statements is not executed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-20

Copyright © 2006, Oracle. All rights reserved.

Programming Guidelines

Make code maintenance easier by:
• Documenting code with comments
• Developing a case convention for the code
• Developing naming conventions for identifiers and

other objects
• Enhancing readability by indenting

Programming Guidelines
Follow programming guidelines shown in the slide to produce clear code and reduce
maintenance when developing a PL/SQL block.
Code Conventions
The following table provides guidelines for writing code in uppercase or lowercase
characters to help distinguish keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, INSERT

PL/SQL keywords Uppercase DECLARE, BEGIN, IF

Data types Uppercase VARCHAR2, BOOLEAN

Identifiers and parameters Lowercase v_sal, emp_cursor, g_sal,
p_empno

Database tables and columns Lowercase employees, employee_id,
department_id

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-21

Copyright © 2006, Oracle. All rights reserved.

Indenting Code

For clarity, indent each level of code.

Example:

BEGIN
IF x=0 THEN

y:=1;
END IF;

END;
/

DECLARE
deptno NUMBER(4);
location_id NUMBER(4);

BEGIN
SELECT department_id,

location_id
INTO deptno,

location_id
FROM departments
WHERE department_name

= 'Sales';
...
END;
/

Indenting Code
For clarity and enhanced readability, indent each level of code. To show structure, you can
divide lines by using carriage returns and you can indent lines by using spaces and tabs.
Compare the following IF statements for readability:

IF x>y THEN max:=x;ELSE max:=y;END IF;

IF x > y THEN
max := x;

ELSE
max := y;

END IF;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-22

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use built-in SQL functions in PL/SQL
• Write nested blocks to break logically related

functionalities
• Decide when to perform explicit conversions
• Qualify variables in nested blocks

Summary
Because PL/SQL is an extension of SQL, the general syntax rules that apply to SQL also
apply to PL/SQL.
A block can have any number of nested blocks defined within its executable part. Blocks
defined within a block are called subblocks. You can nest blocks only in the executable part
of a block. Because the exception section is also in the executable section, you can have
nested blocks in that section. Ensure correct scope and visibility of the variables when you
have nested blocks. Avoid using the same identifiers in the parent and child blocks.
Most of the functions available in SQL are also valid in PL/SQL expressions. Conversion
functions convert a value from one data type to another. Comparison operators compare one
expression to another. The result is always TRUE, FALSE, or NULL. Typically, you use
comparison operators in conditional control statements and in the WHERE clause of SQL
data manipulation statements. The relational operators enable you to compare arbitrarily
complex expressions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-23

Copyright © 2006, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
• Reviewing scoping and nesting rules
• Writing and testing PL/SQL blocks

Practice 3: Overview
Exercises 1 and 2 are paper based.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-24

Practice 3
Note: It is recommended to use iSQL*Plus for this practice.
PL/SQL Block

DECLARE
weight NUMBER(3) := 600;
message VARCHAR2(255) := 'Product 10012';

BEGIN
DECLARE
weight NUMBER(3) := 1;
message VARCHAR2(255) := 'Product 11001';
new_locn VARCHAR2(50) := 'Europe';

BEGIN
weight := weight + 1;
new_locn := 'Western ' || new_locn;

END;
weight := weight + 1;
message := message || ' is in stock';
new_locn := 'Western ' || new_locn;

END;
/

1. Evaluate the PL/SQL block given above and determine the data type and value of each
of the following variables according to the rules of scoping.

a. The value of weight at position 1 is:

b. The value of new_locn at position 1 is:

c. The value of weight at position 2 is:

d. The value of message at position 2 is:

e. The value of new_locn at position 2 is:

1

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-25

Practice 3 (continued)
Scope Example

DECLARE
customer VARCHAR2(50) := 'Womansport';
credit_rating VARCHAR2(50) := 'EXCELLENT';

BEGIN
DECLARE

customer NUMBER(7) := 201;
name VARCHAR2(25) := 'Unisports';

BEGIN
credit_rating :='GOOD';
…

END;
…

END;
/

2. In the PL/SQL block shown above, determine the values and data types for each of the
following cases.

a. The value of customer in the nested block is:

b. The value of name in the nested block is:

c. The value of credit_rating in the nested block is:

d. The value of customer in the main block is:

e. The value of name in the main block is:

f. The value of credit_rating in the main block is:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-26

Practice 3 (continued)
3. Use the same session that you used to execute the practices in Lesson 2. If you have

opened a new session, then execute lab_02_05_soln.sql. Edit
lab_02_05_soln.sql.

a. Use single line comment syntax to comment the lines that create the bind
variables.

b. Use multiple line comments in the executable section to comment the lines that
assign values to the bind variables.

c. Declare two variables: fname of type VARCHAR2 and size 15, and emp_sal of
type NUMBER and size 10.

d. Include the following SQL statement in the executable section:
SELECT first_name, salary

INTO fname, emp_sal FROM employees
WHERE employee_id=110;

e. Change the line that prints ‘Hello World’ to print ‘Hello’ and the first name. You
can comment the lines that display the dates and print the bind variables, if you
want to.

f. Calculate the contribution of the employee towards provident fund (PF).
PF is 12% of the basic salary and basic salary is 45% of the salary. Use the bind
variables for the calculation. Try and use only one expression to calculate the PF.
Print the employee’s salary and his contribution towards PF.

g. Execute and save your script as lab_03_03_soln.sql. Sample output is
shown below.

4. Accept a value at run time using the substitution variable. In this practice, you will
modify the script that you created in exercise 3 to accept user input.

a. Load the script lab_03_04.sql file.
b. Include the PROMPT command to prompt the user with the following message:

‘Please enter your employee number.’
c. Modify the declaration of the empno variable to accept the user input.
d. Modify the select statement to include the variable empno.
e. Execute and save your script as lab_03_04_soln.sql. Sample output is

shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 3-27

Practice 3 (continued)

Enter 100 and click the Continue button.

5. Execute the script lab_03_05.sql. This script creates a table called
employee_details.

a. The employee and employee_details tables have the same data. You will
update the data in the employee_details table. Do not update or change the
data in the employees table.

b. Open the script lab_03_05b.sql and observe the code in the file. Note that
the code accepts the employee number and the department number from the user.

c. You will use this as the skeleton script to develop the application, which was
discussed in the lesson titled “Introduction.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Interacting with
the Oracle Server

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Determine which SQL statements can be directly

included in a PL/SQL executable block
• Manipulate data with DML statements in PL/SQL
• Use transaction control statements in PL/SQL
• Make use of the INTO clause to hold the values

returned by a SQL statement
• Differentiate between implicit cursors and explicit

cursors
• Use SQL cursor attributes

Lesson Aim
In this lesson, you learn to embed standard SQL SELECT, INSERT, UPDATE, DELETE,
and MERGE statements in PL/SQL blocks. You learn how to include data definition
language (DDL) and transaction control statements in PL/SQL. You learn the need for
cursors and differentiate between the two types of cursors. The lesson also presents the
various SQL cursor attributes that can be used with implicit cursors. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-3

Copyright © 2006, Oracle. All rights reserved.

SQL Statements in PL/SQL

• Retrieve a row from the database by using the
SELECT command.

• Make changes to rows in the database by using
DML commands.

• Control a transaction with the COMMIT, ROLLBACK,
or SAVEPOINT command.

SQL Statements in PL/SQL
In a PL/SQL block, you use SQL statements to retrieve and modify data from the database
table. PL/SQL supports data manipulation language (DML) and transaction control
commands. You can use DML commands to modify the data in a database table. However,
remember the following points while using DML statements and transaction control
commands in PL/SQL blocks:

• The keyword END signals the end of a PL/SQL block, not the end of a transaction. Just
as a block can span multiple transactions, a transaction can span multiple blocks.

• PL/SQL does not directly support data definition language (DDL) statements, such as
CREATE TABLE, ALTER TABLE, or DROP TABLE. PL/SQL supports early binding;
as a result, compilation time is greater than execution time. If applications have to
create database objects at run time by passing values, then early binding cannot happen
in such cases. DDL statements cannot be directly executed. These statements are
dynamic SQL statements. Dynamic SQL statements are built as character strings at run
time and can contain placeholders for parameters. Therefore, you can use dynamic
SQL to execute your DDL statements in PL/SQL. Use the EXECUTE IMMEDIATE
statement, which takes the SQL statement as an argument to execute your DDL
statement. The EXECUTE IMMEDIATE statement parses and executes a dynamic SQL
statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-4

SQL Statements in PL/SQL (continued)
Consider the following example:

BEGIN
CREATE TABLE My_emp_table AS SELECT * FROM employees;
END;
/

The example uses a DDL statement directly in the block. When you execute the block,
you see the following error:

create table My_table as select * from table_name; * ERROR
at line 5:
ORA-06550: line 5, column 1:
PLS-00103: Encountered the symbol "CREATE" when expecting
one of the following:
…

Use the EXECUTE IMMEDIATE statement to avoid the error:
BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE My_emp_table AS SELECT *
FROM employees';
END;
/

• PL/SQL does not support data control language (DCL) statements such as GRANT or
REVOKE. You can use EXECUTE IMMEDIATE statement to execute them.

• You use transaction control statements to make the changes to the database permanent
or to discard them. COMMIT, ROLLBACK, and SAVEPOINT are three main
transactional control statements that are used. COMMIT is used to make the database
changes permanent. ROLLBACK is for discarding any changes that were made to the
database after the last COMMIT. SAVEPOINT is used to mark an intermediate point in
transaction processing. The transaction control commands are valid in PL/SQL and
therefore can be directly used in the executable section of a PL/SQL block.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-5

Copyright © 2006, Oracle. All rights reserved.

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT
statement.
Syntax:
SELECT select_list
INTO {variable_name[, variable_name]...

| record_name}
FROM table
[WHERE condition];

SELECT Statements in PL/SQL
Use the SELECT statement to retrieve data from the database.

Guidelines for Retrieving Data in PL/SQL
• Terminate each SQL statement with a semicolon (;).
• Every value retrieved must be stored in a variable using the INTO clause.
• The WHERE clause is optional and can be used to specify input variables, constants,

literals, and PL/SQL expressions. However, when you use the INTO clause, you
should fetch only one row; using the WHERE clause is required in such cases.

Is composed of column names, expressions, constants, and
comparison operators, including PL/SQL variables and constants

condition

Specifies the database table nametable

PL/SQL record that holds the retrieved valuesrecord_name

Scalar variable that holds the retrieved valuevariable_name

List of at least one column; can include SQL expressions, row
functions, or group functions

select_list

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-6

SELECT Statements in PL/SQL (continued)
• Specify the same number of variables in the INTO clause as the number of database

columns in the SELECT clause. Be sure that they correspond positionally and that their
data types are compatible.

• Use group functions, such as SUM, in a SQL statement, because group functions apply
to groups of rows in a table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-7

Copyright © 2006, Oracle. All rights reserved.

SELECT Statements in PL/SQL

• The INTO clause is required.
• Queries must return only one row.

Example
SET SERVEROUTPUT ON

DECLARE

fname VARCHAR2(25);

BEGIN

SELECT first_name INTO fname

FROM employees WHERE employee_id=200;

DBMS_OUTPUT.PUT_LINE(' First Name is : '||fname);

END;

/

SELECT Statements in PL/SQL (continued)
INTO Clause
The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is
used to specify the names of variables that hold the values that SQL returns from the
SELECT clause. You must specify one variable for each item selected, and the order of the
variables must correspond with the items selected.
Use the INTO clause to populate either PL/SQL variables or host variables.
Queries Must Return Only One Row
SELECT statements within a PL/SQL block fall into the ANSI classification of embedded
SQL, for which the following rule applies: queries must return only one row. A query that
returns more than one row or no row generates an error.
PL/SQL manages these errors by raising standard exceptions, which you can handle in the
exception section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS
exceptions. Include a WHERE condition in the SQL statement so that the statement returns a
single row. You learn about exception handling later in the course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-8

SELECT Statements in PL/SQL (continued)
How to Retrieve Multiple Rows from a Table and Operate on the Data
A SELECT statement with the INTO clause can retrieve only one row at a time. If your
requirement is to retrieve multiple rows and operate on the data, you can make use of
explicit cursors. You learn about cursors later in this lesson.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-9

Copyright © 2006, Oracle. All rights reserved.

Retrieving Data in PL/SQL

Retrieve the hire_date and the salary for the
specified employee.

Example
DECLARE
emp_hiredate employees.hire_date%TYPE;
emp_salary employees.salary%TYPE;
BEGIN
SELECT hire_date, salary
INTO emp_hiredate, emp_salary
FROM employees
WHERE employee_id = 100;

END;
/

Retrieving Data in PL/SQL
In the example in the slide, the variables emp_hiredate and emp_salary are declared
in the declarative section of the PL/SQL block. In the executable section, the values of the
columns hire_date and salary for the employee with the employee_id 100 are
retrieved from the employees table; they are stored in the emp_hiredate and
emp_salary variables, respectively. Observe how the INTO clause, along with the
SELECT statement, retrieves the database column values into the PL/SQL variables.
Note: The SELECT statement retrieves hire_date and then salary. The variables in
the INTO clause must thus be in the same order. For example, if you exchange
emp_hiredate and emp_salary in the statement in the slide, the statement results in
an error.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-10

Copyright © 2006, Oracle. All rights reserved.

SET SERVEROUTPUT ON
DECLARE

sum_sal NUMBER(10,2);
deptno NUMBER NOT NULL := 60;

BEGIN
SELECT SUM(salary) -- group function
INTO sum_sal FROM employees
WHERE department_id = deptno;
DBMS_OUTPUT.PUT_LINE ('The sum of salary is '
|| sum_sal);

END;
/

Retrieving Data in PL/SQL

Return the sum of the salaries for all the employees in
the specified department.

Example

Retrieving Data in PL/SQL (continued)
In the example in the slide, the sum_sal and deptno variables are declared in the
declarative section of the PL/SQL block. In the executable section, the total salary for the
employees in the department with the department_id 60 is computed using the SQL
aggregate function SUM. The calculated total salary is assigned to the sum_sal variable.
Note: Group functions cannot be used in PL/SQL syntax. They are used in SQL statements
within a PL/SQL block as shown in the example. You cannot use them as follows:

sum_sal := SUM(employees.salary);

The output of the PL/SQL block in the slide is the following:
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-11

Copyright © 2006, Oracle. All rights reserved.

Naming Conventions

DECLARE
hire_date employees.hire_date%TYPE;
sysdate hire_date%TYPE;
employee_id employees.employee_id%TYPE := 176;

BEGIN
SELECT hire_date, sysdate
INTO hire_date, sysdate
FROM employees
WHERE employee_id = employee_id;

END;
/

Naming Conventions
In potentially ambiguous SQL statements, the names of database columns take precedence
over the names of local variables.
The example shown in the slide is defined as follows: Retrieve the hire date and today’s date
from the employees table for employee_id 176. This example raises an unhandled
run-time exception because in the WHERE clause, the PL/SQL variable names are the same
as the database column names in the employees table.
The following DELETE statement removes all employees from the employees table
where the last name is not null (not just “King”) because the Oracle server assumes that both
occurrences of last_name in the WHERE clause refer to the database column:

DECLARE
last_name VARCHAR2(25) := 'King';

BEGIN
DELETE FROM employees WHERE last_name = last_name;

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-12

Copyright © 2006, Oracle. All rights reserved.

Naming Conventions

• Use a naming convention to avoid ambiguity in
the WHERE clause.

• Avoid using database column names as
identifiers.

• Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

• The names of local variables and formal
parameters take precedence over the names of
database tables.

• The names of database table columns take
precedence over the names of local variables.

Naming Conventions (continued)
Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes
database column names from PL/SQL variable names.

• Database columns and identifiers should have distinct names.
• Syntax errors can arise because PL/SQL checks the database first for a column in the

table.
Note: There is no possibility for ambiguity in the SELECT clause because any identifier in
the SELECT clause must be a database column name. There is no possibility for ambiguity
in the INTO clause because identifiers in the INTO clause must be PL/SQL variables. There
is the possibility of confusion only in the WHERE clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-13

Copyright © 2006, Oracle. All rights reserved.

Manipulating Data Using PL/SQL

Make changes to database tables by using DML
commands:
• INSERT

• UPDATE

• DELETE

• MERGE

INSERT

UPDATE

DELETE

MERGE

Manipulating Data Using PL/SQL
You manipulate data in the database by using the DML commands. You can issue the DML
commands INSERT, UPDATE, DELETE and MERGE without restriction in PL/SQL. Row
locks (and table locks) are released by including COMMIT or ROLLBACK statements in the
PL/SQL code.

• The INSERT statement adds new rows to the table.
• The UPDATE statement modifies existing rows in the table.
• The DELETE statement removes rows from the table.
• The MERGE statement selects rows from one table to update or insert into another

table. The decision whether to update or insert into the target table is based on a
condition in the ON clause.

Note: MERGE is a deterministic statement. That is, you cannot update the same row of the
target table multiple times in the same MERGE statement. You must have INSERT and
UPDATE object privileges in the target table and the SELECT privilege on the source table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-14

Copyright © 2006, Oracle. All rights reserved.

Inserting Data

Add new employee information to the EMPLOYEES
table.

Example
BEGIN
INSERT INTO employees
(employee_id, first_name, last_name, email,
hire_date, job_id, salary)
VALUES(employees_seq.NEXTVAL, 'Ruth', 'Cores',
'RCORES',sysdate, 'AD_ASST', 4000);

END;
/

Inserting Data
In the example in the slide, an INSERT statement is used within a PL/SQL block to insert a
record into the employees table. While using the INSERT command in a PL/SQL block,
you can:

• Use SQL functions, such as USER and SYSDATE
• Generate primary key values by using existing database sequences
• Derive values in the PL/SQL block

Note: The data in the employees table needs to remain unchanged. Inserting, updating,
and deleting are thus not allowed on this table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-15

Copyright © 2006, Oracle. All rights reserved.

Updating Data

Increase the salary of all employees who are stock
clerks.

Example
DECLARE
sal_increase employees.salary%TYPE := 800;

BEGIN
UPDATE employees
SET salary = salary + sal_increase
WHERE job_id = 'ST_CLERK';

END;
/

Updating Data
There may be ambiguity in the SET clause of the UPDATE statement because, although the
identifier on the left of the assignment operator is always a database column, the identifier
on the right can be either a database column or a PL/SQL variable. Recall that if column
names and identifier names are identical in the WHERE clause, the Oracle server looks to the
database first for the name.
Remember that the WHERE clause is used to determine which rows are affected. If no rows
are modified, no error occurs (unlike the SELECT statement in PL/SQL).
Note: PL/SQL variable assignments always use :=, and SQL column assignments always
use =.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-16

Copyright © 2006, Oracle. All rights reserved.

Deleting Data

Delete rows that belong to department 10 from the
employees table.

Example
DECLARE
deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM employees
WHERE department_id = deptno;

END;
/

Deleting Data
The DELETE statement removes unwanted rows from a table. If the WHERE clause is not
used, all the rows in a table can be removed if there are no integrity constraints.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-17

Copyright © 2006, Oracle. All rights reserved.

Merging Rows

Insert or update rows in the copy_emp table to match
the employees table.
DECLARE

empno employees.employee_id%TYPE := 100;
BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = c.empno)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
. . .

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

. . .,e.department_id);
END;
/

Merging Rows
The MERGE statement inserts or updates rows in one table by using data from another table.
Each row is inserted or updated in the target table depending on an equijoin condition.
The example shown matches the employee_id in the COPY_EMP table to the
employee_id in the employees table. If a match is found, the row is updated to match
the row in the employees table. If the row is not found, it is inserted into the copy_emp
table.
The complete example for using MERGE in a PL/SQL block is shown on the next notes page.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-18

Merging Rows (continued)
DECLARE

empno EMPLOYEES.EMPLOYEE_ID%TYPE := 100;

BEGIN

MERGE INTO copy_emp c

USING employees e

ON (e.employee_id = c.empno)

WHEN MATCHED THEN

UPDATE SET

c.first_name = e.first_name,

c.last_name = e.last_name,

c.email = e.email,

c.phone_number = e.phone_number,

c.hire_date = e.hire_date,

c.job_id = e.job_id,

c.salary = e.salary,

c.commission_pct = e.commission_pct,

c.manager_id = e.manager_id,

c.department_id = e.department_id

WHEN NOT MATCHED THEN

INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,

e.salary, e.commission_pct, e.manager_id,

e.department_id);

END;

/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-19

Copyright © 2006, Oracle. All rights reserved.

SQL Cursor

• A cursor is a pointer to the private memory area
allocated by the Oracle server.

• There are two types of cursors:
– Implicit: Created and managed internally by the

Oracle server to process SQL statements
– Explicit: Explicitly declared by the programmer

SQL Cursor
You have already learned that you can include SQL statements that return a single row in a
PL/SQL block. The data retrieved by the SQL statement should be held in variables using
the INTO clause.
Where Does Oracle Process SQL Statements?
The Oracle server allocates a private memory area called the context area for processing
SQL statements. The SQL statement is parsed and processed in this area. Information
required for processing and information retrieved after processing is all stored in this area.
You have no control over this area because it is internally managed by the Oracle server.
A cursor is a pointer to the context area. However, this cursor is an implicit cursor and is
automatically managed by the Oracle server. When the executable block issues a SQL
statement, PL/SQL creates an implicit cursor.
There are two types of cursors:

• Implicit: Implicit cursors are created and managed by the Oracle server. You do not
have access to them. The Oracle server creates such a cursor when it has to execute a
SQL statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-20

SQL Cursor (continued)
• Explicit: As a programmer you may want to retrieve multiple rows from a database

table, have a pointer to each row that is retrieved, and work on the rows one at a time.
In such cases, you can declare cursors explicitly depending on your business
requirements. Cursors that are declared by programmers are called explicit cursors.
You declare these cursors in the declarative section of a PL/SQL block. Remember
that you can also declare variables and exceptions in the declarative section.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-21

Copyright © 2006, Oracle. All rights reserved.

SQL Cursor Attributes for Implicit Cursors

Using SQL cursor attributes, you can test the outcome
of your SQL statements.

Boolean attribute that evaluates to TRUE if
the most recent SQL statement did not
return even one row

SQL%NOTFOUND

Boolean attribute that evaluates to TRUE if the
most recent SQL statement returned at least
one row

SQL%FOUND

An integer value that represents the number
of rows affected by the most recent SQL
statement

SQL%ROWCOUNT

SQL Cursor Attributes for Implicit Cursors
SQL cursor attributes enable you to evaluate what happened when an implicit cursor was
last used. Use these attributes in PL/SQL statements but not in SQL statements.
You can test the attributes SQL%ROWCOUNT, SQL%FOUND, and SQL%NOTFOUND in the
executable section of a block to gather information after the appropriate DML command.
PL/SQL does not return an error if a DML statement does not affect rows in the underlying
table. However, if a SELECT statement does not retrieve any rows, PL/SQL returns an
exception.
Observe that the attributes are prefixed with SQL. These cursor attributes are used with
implicit cursors that are automatically created by PL/SQL and for which you do not know
the names. Therefore, you use SQL instead of the cursor name.
The SQL%NOTFOUND attribute is opposite to SQL%FOUND. This attribute may be used as
the exit condition in a loop. It is useful in UPDATE and DELETE statements when no rows
are changed because exceptions are not returned in these cases.
You learn about explicit cursor attributes later in the course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-22

Copyright © 2006, Oracle. All rights reserved.

SQL Cursor Attributes for Implicit Cursors

Delete rows that have the specified employee ID from
the employees table. Print the number of rows
deleted.

Example
VARIABLE rows_deleted VARCHAR2(30)
DECLARE
empno employees.employee_id%TYPE := 176;

BEGIN
DELETE FROM employees
WHERE employee_id = empno;
:rows_deleted := (SQL%ROWCOUNT ||

' row deleted.');
END;
/
PRINT rows_deleted

SQL Cursor Attributes for Implicit Cursors (continued)
The example in the slide deletes a row with employee_id 176 from the employees
table. Using the SQL%ROWCOUNT attribute, you can print the number of rows deleted.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-23

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Embed DML statements, transaction control

statements, and DDL statements in PL/SQL
• Use the INTO clause, which is mandatory for all

SELECT statements in PL/SQL
• Differentiate between implicit cursors and explicit

cursors
• Use SQL cursor attributes to determine the

outcome of SQL statements

Summary
The DML commands and transaction control statements can be used in PL/SQL programs
without restriction. However, the DDL commands cannot be used directly.
A SELECT statement in PL/SQL block can return only one row. It is mandatory to use the
INTO clause to hold the values retrieved by the SELECT statement.
A cursor is a pointer to the memory area. There are two types of cursors. Implicit cursors are
created and managed internally by the Oracle server to execute SQL statements. You can
use SQL cursor attributes with these cursors to determine the outcome of the SQL statement.
Explicit cursors are declared by programmers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-24

Copyright © 2006, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
• Selecting data from a table
• Inserting data into a table
• Updating data in a table
• Deleting a record from a table

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-25

Practice 4
Note: It is recommended to use iSQL*Plus for this practice.

1. Create a PL/SQL block that selects the maximum department ID in the
departments table and stores it in the max_deptno variable. Display the
maximum department ID.

a. Declare a variable max_deptno of type NUMBER in the declarative section.
b. Start the executable section with the keyword BEGIN and include a SELECT

statement to retrieve the maximum department_id from the departments
table.

c. Display max_deptno and end the executable block.
d. Execute and save your script as lab_04_01_soln.sql. Sample output is

shown below.

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the
departments table.

a. Load the script lab_04_01_soln.sql. Declare two variables:
dept_name of type departments.department_name.
Bind variable dept_id of type NUMBER.
Assign ‘Education’ to dept_name in the declarative section.

b. You have already retrieved the current maximum department number from the
departments table. Add 10 to it and assign the result to dept_id.

c. Include an INSERT statement to insert data into the department_name,
department_id, and location_id columns of the departments table.
Use values in dept_name, dept_id for department_name,
department_id and use NULL for location_id.

d. Use the SQL attribute SQL%ROWCOUNT to display the number of rows that are
affected.

e. Execute a select statement to check if the new department is inserted. You can
terminate the PL/SQL block with “/” and include the SELECT statement in your
script.

f. Execute and save your script as lab_04_02_soln.sql. Sample output is
shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 4-26

Practice 4 (continued)
3. In exercise 2, you have set location_id to null. Create a PL/SQL block that

updates the location_id to 3000 for the new department. Use the bind variable
dept_id to update the row.
Note: Skip step a if you have not started a new iSQL*Plus session for this practice.

a. If you have started a new iSQL*Plus session, delete the department that you have
added to the departments table and execute the script
lab_04_02_soln.sql.

b. Start the executable block with the keyword BEGIN. Include the UPDATE
statement to set the location_id to 3000 for the new department. Use the
bind variable dept_id in your UPDATE statement.

c. End the executable block with the keyword END. Terminate the PL/SQL block
with “/” and include a SELECT statement to display the department that you
updated.

d. Finally, include a DELETE statement to delete the department that you added.
e. Execute and save your script as lab_04_03_soln.sql. Sample output is

shown below.

4. Load the script lab_03_05b.sql to the iSQL*Plus workspace.
a. Observe that the code has nested blocks. You will see the declarative section of

the outer block. a. Look for the comment “INCLUDE EXECUTABLE
SECTION OF OUTER BLOCK HERE” and start an executable section

b. Include a single SELECT statement, which retrieves the employee_id of the
employee working in the ‘Human Resources’ department. Use the INTO clause
to store the retrieved value in the variable emp_authorization.

c. Save your script as lab_04_04_soln.sql.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Writing Control Structures

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the uses and types of control structures
• Construct an IF statement
• Use CASE statements and CASE expressions
• Construct and identify different loop statements
• Use guidelines when using conditional control

structures

Lesson Aim
You have learned to write PL/SQL blocks containing declarative and executable sections.
You have also learned to include expressions and SQL statements in the executable block.
In this lesson, you learn how to use control structures such as IF statements, CASE
expressions, and LOOP structures in a PL/SQL block. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-3

Copyright © 2006, Oracle. All rights reserved.

Controlling Flow of Execution

for
loop

while

Controlling Flow of Execution
You can change the logical flow of statements within the PL/SQL block with a number of
control structures. This lesson addresses three types of PL/SQL control structures:
conditional constructs with the IF statement, CASE expressions, and LOOP control
structures.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-4

Copyright © 2006, Oracle. All rights reserved.

IF Statements

Syntax:

IF condition THEN
statements;

[ELSIF condition THEN
statements;]

[ELSE
statements;]

END IF;

IF Statements
The structure of the PL/SQL IF statement is similar to the structure of IF statements in
other procedural languages. It allows PL/SQL to perform actions selectively based on
conditions.
In the syntax:

Can be one or more PL/SQL or SQL statements. (They may
include further IF statements containing several nested IF,
ELSE, and ELSIF statements.) The statements in the THEN
clause are executed only if the condition in the associated IF
clause evaluates to TRUE.

statements

Introduces a clause that associates the Boolean expression
with the sequence of statements that follows it

THEN

Is a Boolean variable or expression that returns TRUE,
FALSE, or NULL

condition

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-5

IF Statements (continued)
In the syntax:

Note: ELSIF and ELSE are optional in an IF statement. You can have any number of
ELSIF keywords but only one ELSE keyword in your IF statement. END IF marks the end
of an IF statement and must be terminated by a semicolon.

END IF marks the end of an IF statementEND IF

Introduces the default clause that is executed if and only if none of the
earlier predicates (introduced by IF and ELSIF) are TRUE. The
tests are executed in sequence so that a later predicate that might be
true is preempted by an earlier predicate that is true.

ELSE

Is a keyword that introduces a Boolean expression (If the first
condition yields FALSE or NULL, the ELSIF keyword introduces
additional conditions.)

ELSIF

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-6

Copyright © 2006, Oracle. All rights reserved.

Simple IF Statement

DECLARE
myage number:=31;

BEGIN
IF myage < 11
THEN
DBMS_OUTPUT.PUT_LINE(' I am a child ');

END IF;
END;
/

Simple IF Statement
The slide shows an example of a simple IF statement with the THEN clause. The variable
myage is initialized to 31. The condition for the IF statement returns FALSE because
myage is not less than 11. Therefore, the control never reaches the THEN clause. We add
code to this example to see the usage of ELSE and ELSIF.
An IF statement can have multiple conditional expressions related with logical operators
such as AND, OR, and NOT. Here is an example:

IF (myfirstname='Christopher' AND myage <11)
…

The condition uses the AND operator and therefore evaluates to TRUE only if both
conditions are evaluated as TRUE. There is no limitation on the number of conditional
expressions. However, these statements must be related with appropriate logical operators.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-7

Copyright © 2006, Oracle. All rights reserved.

IF THEN ELSE Statement

SET SERVEROUTPUT ON
DECLARE
myage number:=31;
BEGIN
IF myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;
END;
/

IF THEN ELSE Statement
An ELSE clause is added to the code in the previous slide. The condition has not changed
and therefore still evaluates to FALSE. Recall that the statements in the THEN clause are
executed only if the condition returns TRUE. In this case, the condition returns FALSE and
the control moves to the ELSE statement. The output of the block is shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-8

Copyright © 2006, Oracle. All rights reserved.

IF ELSIF ELSE Clause
DECLARE
myage number:=31;
BEGIN
IF myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSIF myage < 20
THEN

DBMS_OUTPUT.PUT_LINE(' I am young ');
ELSIF myage < 30
THEN

DBMS_OUTPUT.PUT_LINE(' I am in my twenties');
ELSIF myage < 40
THEN

DBMS_OUTPUT.PUT_LINE(' I am in my thirties');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am always young ');
END IF;
END;
/

IF ELSIF ELSE Clause
The IF clause now contains multiple ELSIF clauses and an ELSE. Notice that the ELSIF
clauses can have conditions, unlike the ELSE clause. The condition for ELSIF should be
followed by the THEN clause, which is executed if the condition of the ELSIF returns
TRUE.
When you have multiple ELSIF clauses, if the first condition is FALSE or NULL, the
control shifts to the next ELSIF clause. Conditions are evaluated one by one from the top.
If all conditions are FALSE or NULL, the statements in the ELSE clause are executed. The
final ELSE clause is optional.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-9

Copyright © 2006, Oracle. All rights reserved.

NULL Values in IF Statements

DECLARE
myage number;
BEGIN
IF myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;
END;
/

NULL Values in IF Statements
In the example shown in the slide, the variable myage is declared but not initialized. The
condition in the IF statement returns NULL rather than TRUE or FALSE. In such a case, the
control goes to the ELSE statement.
Guidelines:

• You can perform actions selectively based on conditions that are being met.
• When writing code, remember the spelling of the keywords:

– ELSIF is one word
– END IF is two words

• If the controlling Boolean condition is TRUE, the associated sequence of statements is
executed; if the controlling Boolean condition is FALSE or NULL, the associated
sequence of statements is passed over. Any number of ELSIF clauses are permitted.

• Indent the conditionally executed statements for clarity.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-10

Copyright © 2006, Oracle. All rights reserved.

CASE Expressions

• A CASE expression selects a result and returns it.
• To select the result, the CASE expression uses

expressions. The value returned by these
expressions is used to select one of several
alternatives.

CASE selector
WHEN expression1 THEN result1
WHEN expression2 THEN result2
...
WHEN expressionN THEN resultN
[ELSE resultN+1]

END;
/

CASE Expressions
A CASE expression returns a result based on one or more alternatives. To return the result,
the CASE expression uses a selector, which is an expression whose value is used to return
one of several alternatives. The selector is followed by one or more WHEN clauses that are
checked sequentially. The value of the selector determines which result is returned. If the
value of the selector equals the value of a WHEN clause expression, that WHEN clause is
executed and that result is returned.
PL/SQL also provides a searched CASE expression, which has the form:

CASE
WHEN search_condition1 THEN result1
WHEN search_condition2 THEN result2
...
WHEN search_conditionN THEN resultN
[ELSE resultN+1]

END;

A searched CASE expression has no selector. Furthermore, its WHEN clauses contain search
conditions that yield a Boolean value rather than expressions that can yield a value of any
type.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-11

Copyright © 2006, Oracle. All rights reserved.

CASE Expressions: Example

SET SERVEROUTPUT ON
SET VERIFY OFF
DECLARE

grade CHAR(1) := UPPER('&grade');
appraisal VARCHAR2(20);

BEGIN
appraisal :=

CASE grade
WHEN 'A' THEN 'Excellent'
WHEN 'B' THEN 'Very Good'
WHEN 'C' THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| grade || '

Appraisal ' || appraisal);
END;
/

CASE Expressions: Example
In the example in the slide, the CASE expression uses the value in the grade variable as the
expression. This value is accepted from the user by using a substitution variable. Based on
the value entered by the user, the CASE expression returns the value of the appraisal
variable based on the value of the grade value. The output of the example is as follows
when you enter a or A for the grade: O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-12

Copyright © 2006, Oracle. All rights reserved.

Searched CASE Expressions

DECLARE
grade CHAR(1) := UPPER('&grade');
appraisal VARCHAR2(20);

BEGIN
appraisal :=
CASE

WHEN grade = 'A' THEN 'Excellent'
WHEN grade IN ('B','C') THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| grade || '

Appraisal ' || appraisal);
END;
/

Searched CASE Expressions
In the previous example, you saw a single test expression that was the grade variable.
The WHEN clause compared a value against this test expression.
In searched CASE statements, you do not have a test expression. Instead, the WHEN clause
contains an expression that results in a Boolean value. The same example is rewritten in this
slide to show searched CASE statements. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-13

Copyright © 2006, Oracle. All rights reserved.

CASE Statement
DECLARE

deptid NUMBER;
deptname VARCHAR2(20);
emps NUMBER;
mngid NUMBER:= 108;

BEGIN
CASE mngid
WHEN 108 THEN
SELECT department_id, department_name
INTO deptid, deptname FROM departments
WHERE manager_id=108;

SELECT count(*) INTO emps FROM employees
WHERE department_id=deptid;

WHEN 200 THEN
...

END CASE;
DBMS_OUTPUT.PUT_LINE ('You are working in the '|| deptname||
' department. There are '||emps ||' employees in this
department');
END;
/

CASE Statement
Recall the use of the IF statement. You may include n number of PL/SQL statements in
the THEN clause and also in the ELSE clause. Similarly, you can include statements in the
CASE statement. The CASE statement is more readable compared to multiple IF and
ELSIF statements.
How Is a CASE Expression Different from a CASE Statement?
A CASE expression evaluates the condition and returns a value. On the other hand, a CASE
statement evaluates the condition and performs an action. A CASE statement can be a
complete PL/SQL block. CASE statements end with END CASE; but CASE expressions end
with END;.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-14

Copyright © 2006, Oracle. All rights reserved.

Handling Nulls

When working with nulls, you can avoid some
common mistakes by keeping in mind the following
rules:
• Simple comparisons involving nulls always yield

NULL.
• Applying the logical operator NOT to a null yields

NULL.
• If the condition yields NULL in conditional control

statements, its associated sequence of statements
is not executed.

Handling Nulls
Consider the following example:

x := 5;
y := NULL;
...
IF x != y THEN -- yields NULL, not TRUE

-- sequence_of_statements that are not executed
END IF;

You may expect the sequence of statements to execute because x and y seem unequal. But
nulls are indeterminate. Whether or not x is equal to y is unknown. Therefore, the IF
condition yields NULL and the sequence of statements is bypassed.

a := NULL;
b := NULL;
...
IF a = b THEN -- yields NULL, not TRUE

-- sequence_of_statements that are not executed
END IF;

In the second example, you may expect the sequence of statements to execute because a and
b seem equal. But, again, equality is unknown, so the IF condition yields NULL and the
sequence of statements is bypassed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-15

Copyright © 2006, Oracle. All rights reserved.

Logic Tables

Build a simple Boolean condition with a comparison
operator.

AND

TRUE

FALSE

NULL

TRUE FALSE NULL

TRUE

NULL NULL

NULL

FALSE FALSE

FALSE

FALSE

FALSE

NOT

TRUE

FALSE

NULL

FALSE

TRUE

NULL

TRUE

NULL

OR TRUE FALSE NULL

TRUE

TRUE

TRUE

TRUETRUE

FALSE

NULL NULL

NULLFALSE

Logic Tables
You can build a simple Boolean condition by combining number, character, and date
expressions with comparison operators.
You can build a complex Boolean condition by combining simple Boolean conditions with
the logical operators AND, OR, and NOT. The logical operators are used to check the Boolean
variable values and return TRUE, FALSE, or NULL. In the logic tables shown in the slide:
• FALSE takes precedence in an AND condition, and TRUE takes precedence in an OR

condition
• AND returns TRUE only if both of its operands are TRUE
• OR returns FALSE only if both of its operands are FALSE
• NULL AND TRUE always evaluates to NULL because it is not known whether the

second operand evaluates to TRUE or not.
Note: The negation of NULL (NOT NULL) results in a null value because null values are
indeterminate.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-16

Copyright © 2006, Oracle. All rights reserved.

Boolean Conditions

What is the value of flag in each case?

REORDER_FLAG AVAILABLE_FLAG FLAG

TRUE TRUE

TRUE FALSE

NULL TRUE

NULL FALSE

flag := reorder_flag AND available_flag;

? (1)

? (2)

? (3)

? (4)

Boolean Conditions
The AND logic table can help you evaluate the possibilities for the Boolean condition in the
slide.
Answers

1. TRUE
2. FALSE
3. NULL
4. FALSE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-17

Copyright © 2006, Oracle. All rights reserved.

Iterative Control: LOOP Statements

• Loops repeat a statement or sequence of
statements multiple times.

• There are three loop types:
– Basic loop
– FOR loop
– WHILE loop

Iterative Control: LOOP Statements
PL/SQL provides a number of facilities to structure loops to repeat a statement or sequence
of statements multiple times. Loops are mainly used to execute statements repeatedly until
an exit condition is reached. It is mandatory to have an exit condition in a loop; otherwise,
the loop is infinite.
Looping constructs are the second type of control structure. PL/SQL provides the following
types of loops:

• Basic loop that performs repetitive actions without overall conditions
• FOR loops that perform iterative actions based on a count
• WHILE loops that perform iterative actions based on a condition

Note: An EXIT statement can be used to terminate loops. A basic loop must have an EXIT.
The cursor FOR LOOP (which is another type of FOR LOOP) is discussed in the lesson titled
“Using Explicit Cursors.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-18

Copyright © 2006, Oracle. All rights reserved.

Basic Loops

Syntax:
LOOP
statement1;
. . .
EXIT [WHEN condition];

END LOOP;

Basic Loops
The simplest form of a LOOP statement is the basic (or infinite) loop, which encloses a
sequence of statements between the keywords LOOP and END LOOP. Each time the flow of
execution reaches the END LOOP statement, control is returned to the corresponding LOOP
statement above it. A basic loop allows execution of its statements at least once, even if the
EXIT condition is already met upon entering the loop. Without the EXIT statement, the
loop would be infinite.
EXIT Statement
You can use the EXIT statement to terminate a loop. Control passes to the next statement
after the END LOOP statement. You can issue EXIT either as an action within an IF
statement or as a stand-alone statement within the loop. The EXIT statement must be placed
inside a loop. In the latter case, you can attach a WHEN clause to enable conditional
termination of the loop. When the EXIT statement is encountered, the condition in the
WHEN clause is evaluated. If the condition yields TRUE, the loop ends and control passes to
the next statement after the loop. A basic loop can contain multiple EXIT statements, but it
is recommended that you have only one EXIT point.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-19

Copyright © 2006, Oracle. All rights reserved.

DECLARE
countryid locations.country_id%TYPE := 'CA';
loc_id locations.location_id%TYPE;
counter NUMBER(2) := 1;
new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO loc_id FROM locations
WHERE country_id = countryid;
LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((loc_id + counter), new_city, countryid);
counter := counter + 1;
EXIT WHEN counter > 3;

END LOOP;
END;
/

Basic Loops

Example

Basic Loops (continued)
The basic loop example shown in the slide is defined as follows: Insert three new location
IDs for the CA country code and the city of Montreal.
Note: A basic loop allows execution of its statements at least once, even if the condition has
been met upon entering the loop. This happens only if the condition is placed in the loop so
that it is not checked until after these statements. However, if the exit condition is placed at
the top of the loop (before any of the other executable statements) and if that condition is
true, the loop exits and the statements never execute.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-20

Copyright © 2006, Oracle. All rights reserved.

WHILE Loops

Syntax:

Use the WHILE loop to repeat statements while a
condition is TRUE.

WHILE condition LOOP
statement1;
statement2;
. . .

END LOOP;

WHILE Loops
You can use the WHILE loop to repeat a sequence of statements until the controlling
condition is no longer TRUE. The condition is evaluated at the start of each iteration. The
loop terminates when the condition is FALSE or NULL. If the condition is FALSE or NULL
at the start of the loop, no further iterations are performed.
In the syntax:

condition Is a Boolean variable or expression (TRUE, FALSE, or NULL)
statement Can be one or more PL/SQL or SQL statements

If the variables involved in the conditions do not change during the body of the loop, the
condition remains TRUE and the loop does not terminate.
Note: If the condition yields NULL, the loop is bypassed and control passes to the next
statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-21

Copyright © 2006, Oracle. All rights reserved.

WHILE Loops

Example
DECLARE

countryid locations.country_id%TYPE := 'CA';
loc_id locations.location_id%TYPE;
new_city locations.city%TYPE := 'Montreal';
counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO loc_id FROM locations
WHERE country_id = countryid;
WHILE counter <= 3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((loc_id + counter), new_city, countryid);
counter := counter + 1;

END LOOP;
END;
/

WHILE Loops (continued)
In the example in the slide, three new locations IDs for the CA country code and the city of
Montreal are added.
With each iteration through the WHILE loop, a counter (counter) is incremented. If the
number of iterations is less than or equal to the number 3, then the code within the loop is
executed and a row is inserted into the locations table. After the counter exceeds the
number of new locations for this city and country, the condition that controls the loop
evaluates to FALSE and the loop terminates.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-22

Copyright © 2006, Oracle. All rights reserved.

FOR Loops

• Use a FOR loop to shortcut the test for the number
of iterations.

• Do not declare the counter; it is declared
implicitly.

• 'lower_bound .. upper_bound' is required
syntax.

FOR counter IN [REVERSE]
lower_bound..upper_bound LOOP

statement1;
statement2;
. . .

END LOOP;

FOR Loops
FOR loops have the same general structure as the basic loop. In addition, they have a control
statement before the LOOP keyword to set the number of iterations that PL/SQL performs.
In the syntax:

Do not declare the counter. It is declared implicitly as an integer.

Specifies the lower bound for the range of counter values
Specifies the upper bound for the range of counter values

lower_bound
upper_bound

Causes the counter to decrement with each iteration from the upper
bound to the lower bound
Note: The lower bound is still referenced first.

REVERSE

Is an implicitly declared integer whose value automatically
increases or decreases (decreases if the REVERSE keyword is used)
by 1 on each iteration of the loop until the upper or lower bound is
reached

counter O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-23

FOR Loops (continued)
Note: The sequence of statements is executed each time the counter is incremented, as
determined by the two bounds. The lower bound and upper bound of the loop range can be
literals, variables, or expressions, but they must evaluate to integers. The bounds are rounded
to integers; that is, 11/3 and 8/5 are valid upper or lower bounds. The lower bound and upper
bound are inclusive in the loop range. If the lower bound of the loop range evaluates to a
larger integer than the upper bound, the sequence of statements is not executed.
For example, the following statement is executed only once:

FOR i IN 3..3
LOOP
statement1;
END LOOP;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-24

Copyright © 2006, Oracle. All rights reserved.

FOR Loops

Example
DECLARE

countryid locations.country_id%TYPE := 'CA';
loc_id locations.location_id%TYPE;
new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO loc_id
FROM locations
WHERE country_id = countryid;

FOR i IN 1..3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((loc_id + i), new_city, countryid);

END LOOP;
END;
/

FOR Loops (continued)
You have already learned how to insert three new locations for the CA country code and the
city Montreal by using the basic loop and the WHILE loop. This slide shows you how to
achieve the same by using the FOR loop.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-25

Copyright © 2006, Oracle. All rights reserved.

FOR Loops

Guidelines
• Reference the counter within the loop only; it is

undefined outside the loop.
• Do not reference the counter as the target of an

assignment.
• Neither loop bound should be NULL.

FOR Loops (continued)
The slide lists the guidelines to follow when writing a FOR loop.
Note: The lower and upper bounds of a LOOP statement do not need to be numeric literals.
They can be expressions that convert to numeric values.
Example:

DECLARE
lower NUMBER := 1;
upper NUMBER := 100;

BEGIN
FOR i IN lower..upper LOOP
...
END LOOP;

END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-26

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Loops

• Use the basic loop when the statements inside the
loop must execute at least once.

• Use the WHILE loop if the condition must be
evaluated at the start of each iteration.

• Use a FOR loop if the number of iterations is
known.

Guidelines for Loops
A basic loop allows execution of its statement at least once, even if the condition is already
met upon entering the loop. Without the EXIT statement, the loop would be infinite.
You can use the WHILE loop to repeat a sequence of statements until the controlling
condition is no longer TRUE. The condition is evaluated at the start of each iteration. The
loop terminates when the condition is FALSE. If the condition is FALSE at the start of the
loop, no further iterations are performed.
FOR loops have a control statement before the LOOP keyword to determine the number of
iterations that PL/SQL performs. Use a FOR loop if the number of iterations is
predetermined.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-27

Copyright © 2006, Oracle. All rights reserved.

Nested Loops and Labels

• You can nest loops to multiple levels.
• Use labels to distinguish between blocks and

loops.
• Exit the outer loop with the EXIT statement that

references the label.

Nested Loops and Labels
You can nest FOR, WHILE, and basic loops within one another. The termination of a nested
loop does not terminate the enclosing loop unless an exception was raised. However, you
can label loops and exit the outer loop with the EXIT statement.
Label names follow the same rules as other identifiers. A label is placed before a statement,
either on the same line or on a separate line. White space is insignificant in all PL/SQL
parsing except inside literals. Label basic loops by placing the label before the word LOOP
within label delimiters (<<label>>). In FOR and WHILE loops, place the label before FOR or
WHILE.
If the loop is labeled, the label name can optionally be included after the END LOOP
statement for clarity.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-28

Copyright © 2006, Oracle. All rights reserved.

Nested Loops and Labels

...
BEGIN
<<Outer_loop>>
LOOP
counter := counter+1;

EXIT WHEN counter>10;
<<Inner_loop>>
LOOP
...
EXIT Outer_loop WHEN total_done = 'YES';
-- Leave both loops
EXIT WHEN inner_done = 'YES';
-- Leave inner loop only
...

END LOOP Inner_loop;
...

END LOOP Outer_loop;
END;
/

Nested Loops and Labels (continued)
In the example in the slide, there are two loops. The outer loop is identified by the label
<<Outer_Loop>> and the inner loop is identified by the label <<Inner_Loop>>.
The identifiers are placed before the word LOOP within label delimiters (<<label>>). The
inner loop is nested within the outer loop. The label names are included after the END LOOP
statements for clarity. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-29

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to change
the logical flow of statements by using the following
control structures:
• Conditional (IF statement)
• CASE expressions and CASE statements
• Loops:

– Basic loop
– FOR loop
– WHILE loop

• EXIT statements

Summary
A language can be called a programming language only if it provides control structures for
the implementation of the business logic. These control structures are also used to control
the flow of the program. PL/SQL is a programming language that integrates programming
constructs with SQL.
A conditional control construct checks for the validity of a condition and performs an action
accordingly. You use the IF construct to perform a conditional execution of statements.
An iterative control construct executes a sequence of statements repeatedly, as long as a
specified condition holds TRUE. You use the various loop constructs to perform iterative
operations.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-30

Copyright © 2006, Oracle. All rights reserved.

Practice 5: Overview

This practice covers the following topics:
• Performing conditional actions by using the IF

statement
• Performing iterative steps by using the loop

structure

Practice 5: Overview
In this practice, you create PL/SQL blocks that incorporate loops and conditional control
structures. The exercises test your understanding of writing various IF statements and LOOP
constructs.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-31

Practice 5
1. Execute the command in the file lab_05_01.sql to create the messages table.

Write a PL/SQL block to insert numbers into the messages table.
a. Insert the numbers 1 to 10, excluding 6 and 8.
b. Commit before the end of the block.
c. Execute a SELECT statement to verify that your PL/SQL block worked.

You should see the following output.

2. Execute the script lab_05_02.sql. This script creates an emp table that is a replica
of the employees table. It alters the emp table to add a new column, stars, of
VARCHAR2 data type and size 50. Create a PL/SQL block that inserts an asterisk in the
stars column for every $1000 of the employee’s salary. Save your script as
lab_05_02_soln.sql.

a. Use the DEFINE command to define a variable called empno and initialize it to
176.

b. Start the declarative section of the block and pass the value of empno to the
PL/SQL block through an iSQL*Plus substitution variable. Declare a variable
asterisk of type emp.stars and initialize it to NULL. Create a variable
sal of type emp.salary.

c. In the executable section, write logic to append an asterisk (*) to the string for
every $1000 of the salary amount. For example, if the employee earns $8000, the
string of asterisks should contain eight asterisks. If the employee earns $12500,
the string of asterisks should contain 13 asterisks.

d. Update the stars column for the employee with the string of asterisks. Commit
before the end of the block.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 5-32

Practice 5 (continued)
e. Display the row from the emp table to verify whether your PL/SQL block has

executed successfully.
f. Execute and save your script as lab_05_02_soln.sql. The output is shown

below.

3. Load the script lab_04_04_soln.sql, which you created in question 4 of
Practice 4.

a. Look for the comment “INCLUDE SIMPLE IF STATEMENT HERE” and
include a simple IF statement to check if the values of emp_id and
emp_authorization are the same.

b. Save your script as lab_05_03_soln.sql.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Working with Composite
Data Types

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Create user-defined PL/SQL records
• Create a record with the %ROWTYPE attribute
• Create an INDEX BY table
• Create an INDEX BY table of records
• Describe the differences among records, tables,

and tables of records

Lesson Aim
You have already been introduced to composite data types. In this lesson, you learn more
about composite data types and their uses.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-3

Copyright © 2006, Oracle. All rights reserved.

Composite Data Types

• Can hold multiple values (unlike scalar types)
• Are of two types:

– PL/SQL records
– PL/SQL collections

– INDEX BY tables or associative arrays
– Nested table
– VARRAY

Composite Data Types
You have learned that variables of scalar data type can hold only one value, whereas a
variable of composite data type can hold multiple values of scalar data type or composite
data type. There are two types of composite data types:

• PL/SQL records: Records are used to treat related but dissimilar data as a logical unit.
A PL/SQL record can have variables of different types. For example, you can define a
record to hold employee details. This involves storing an employee number as
NUMBER, a first name and last name as VARCHAR2, and so on. By creating a record to
store employee details, you create a logical collective unit. This makes data access and
manipulation easier.

• PL/SQL collections: Collections are used to treat data as a single unit. Collections are
of three types:

- INDEX BY tables or associative arrays
- Nested table
- VARRAY

Why Use Composite Data Types?
You have all the related data as a single unit. You can easily access and modify the data.
Data is easier to manage, relate, and transport if it is composite. An analogy is having a
single bag for all your laptop components rather than a separate bag for each component.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-4

Copyright © 2006, Oracle. All rights reserved.

Composite Data Types

• Use PL/SQL records when you want to store
values of different data types but only one
occurrence at a time.

• Use PL/SQL collections when you want to store
values of the same data type.

Composite Data Types (continued)
If both PL/SQL records and PL/SQL collections are composite types, how do you choose
which one to use?
Use PL/SQL records when you want to store values of different data types that are logically
related. If you create a record to hold employee details, indicate that all the values stored are
related because they provide information about a particular employee.
Use PL/SQL collections when you want to store values of the same data type. Note that this
data type can also be of the composite type (such as records). You can define a collection to
hold the first names of all employees. You may have stored n names in the collection;
however, name 1 is not related to name 2. The relation between these names is only that they
are employee names. These collections are similar to arrays in programming languages such
as C, C++, and Java.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-5

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Records

• Must contain one or more components (called
fields) of any scalar, RECORD, or INDEX BY table
data type

• Are similar to structures in most 3GL languages
(including C and C++)

• Are user defined and can be a subset of a row in a
table

• Treat a collection of fields as a logical unit
• Are convenient for fetching a row of data from a

table for processing

PL/SQL Records
A record is a group of related data items stored in fields, each with its own name and data
type.

• Each record defined can have as many fields as necessary.
• Records can be assigned initial values and can be defined as NOT NULL.
• Fields without initial values are initialized to NULL.
• The DEFAULT keyword can also be used when defining fields.
• You can define RECORD types and declare user-defined records in the declarative part

of any block, subprogram, or package.
• You can declare and reference nested records. One record can be the component of

another record.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-6

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Record

Syntax:
TYPE type_name IS RECORD

(field_declaration[, field_declaration]…);

field_name {field_type | variable%TYPE

| table.column%TYPE | table%ROWTYPE}

[[NOT NULL] {:= | DEFAULT} expr]

identifier type_name;

1

2

field_declaration:

Creating a PL/SQL Record
PL/SQL records are user-defined composite types. To use them:

1. Define the record in the declarative section of a PL/SQL block. The syntax for
defining the record is shown in the slide.

2. Declare (and optionally initialize) the internal components of this record type.
In the syntax:

type_name Is the name of the RECORD type (This identifier is used to declare
records.)

field_name Is the name of a field within the record

field_type Is the data type of the field (It represents any PL/SQL data type
except REF CURSOR. You can use the %TYPE and %ROWTYPE
attributes.)

expr Is the field_type or an initial value
The NOT NULL constraint prevents assigning nulls to those fields. Be sure to initialize the
NOT NULL fields.
REF CURSOR is covered in appendix C (“REF Cursors”).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-7

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.

Example
...
TYPE emp_record_type IS RECORD
(last_name VARCHAR2(25),
job_id VARCHAR2(10),
salary NUMBER(8,2));

emp_record emp_record_type;
...

Creating a PL/SQL Record (continued)
Field declarations used in defining a record are like variable declarations. Each field has a
unique name and a specific data type. There are no predefined data types for PL/SQL
records, as there are for scalar variables. Therefore, you must create the record type first and
then declare an identifier using that type.
In the example in the slide, a record type (emp_record_type) is defined to hold the
values for last_name, job_id, and salary. In the next step, a record (emp_record)
of the type emp_record_type is declared.
The following example shows that you can use the %TYPE attribute to specify a field data
type:

DECLARE
TYPE emp_record_type IS RECORD
(employee_id NUMBER(6) NOT NULL := 100,
last_name employees.last_name%TYPE,
job_id employees.job_id%TYPE);
emp_record emp_record_type;
...

Note: You can add the NOT NULL constraint to any field declaration to prevent assigning
nulls to that field. Remember that the fields declared as NOT NULL must be initialized.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-8

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Record Structure

Example

100 King AD_PRES

employee_id number(6) last_name varchar2(25) job_id varchar2(10)
Field2 (data type) Field3 (data type)Field1 (data type)

Field2 (data type) Field3 (data type)Field1 (data type)

PL/SQL Record Structure
Fields in a record are accessed with the name of the record. To reference or initialize an
individual field, use the dot notation:

record_name.field_name

For example, you reference the job_id field in the emp_record record as follows:
emp_record.job_id

You can then assign a value to the record field:
emp_record.job_id := 'ST_CLERK';

In a block or subprogram, user-defined records are instantiated when you enter the block or
subprogram. They cease to exist when you exit the block or subprogram.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-9

Copyright © 2006, Oracle. All rights reserved.

%ROWTYPE Attribute

• Declare a variable according to a collection of
columns in a database table or view.

• Prefix %ROWTYPE with the database table or view.
• Fields in the record take their names and data

types from the columns of the table or view.
Syntax:

DECLARE
identifier reference%ROWTYPE;

%ROWTYPE Attribute
You have learned that %TYPE is used to declare a variable of a column type. The variable
has the same data type and size as the table column. The benefit of %TYPE is that you do not
have to change the variable if the column is altered. Also, if the variable is used in any
calculations, you need not worry about its precision.
The %ROWTYPE attribute is used to declare a record that can hold an entire row of a table or
view. The fields in the record take their names and data types from the columns of the table
or view. The record can also store an entire row of data fetched from a cursor or cursor
variable.
The slide shows the syntax for declaring a record. In the syntax:

In the following example, a record is declared using %ROWTYPE as a data type specifier:
DECLARE
emp_record employees%ROWTYPE;
...

Is the name of the table, view, cursor, or cursor variable on
which the record is to be based (The table or view must exist for
this reference to be valid.)

reference

Is the name chosen for the record as a wholeidentifier

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-10

%ROWTYPE Attribute (continued)
The emp_record record has a structure consisting of the following fields, each
representing a column in the employees table.
Note: This is not code but simply the structure of the composite variable.

(employee_id NUMBER(6),
first_name VARCHAR2(20),
last_name VARCHAR2(20),
email VARCHAR2(20),
phone_number VARCHAR2(20),
hire_date DATE,
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
manager_id NUMBER(6),
department_id NUMBER(4))

To reference an individual field, use dot notation:
record_name.field_name

For example, you reference the commission_pct field in the emp_record record as
follows:

emp_record.commission_pct

You can then assign a value to the record field:
emp_record.commission_pct:= .35;

Assigning Values to Records
You can assign a list of common values to a record by using the SELECT or FETCH
statement. Make sure that the column names appear in the same order as the fields in your
record. You can also assign one record to another if both have the same corresponding data
types. A user-defined record and a %ROWTYPE record never have the same data type.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-11

Copyright © 2006, Oracle. All rights reserved.

Advantages of Using %ROWTYPE

• The number and data types of the underlying
database columns need not be known—and in fact
might change at run time.

• The %ROWTYPE attribute is useful when retrieving a
row with the SELECT * statement.

Advantages of Using %ROWTYPE
The advantages of using the %ROWTYPE attribute are listed in the slide. Use the %ROWTYPE
attribute when you are not sure about the structure of the underlying database table.
The main advantage of using %ROWTYPE is that it simplifies maintenance. Using
%ROWTYPE ensures that the data types of the variables declared with this attribute change
dynamically when the underlying table is altered. If a DDL statement changes the columns
in a table, then the PL/SQL program unit is invalidated. When the program is recompiled, it
will automatically reflect the new table format.
The %ROWTYPE attribute is particularly useful when you want to retrieve an entire row from
a table. In the absence of this attribute, you would be forced to declare a variable for each of
the columns retrieved by the select statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-12

Copyright © 2006, Oracle. All rights reserved.

%ROWTYPE Attribute

...

DEFINE employee_number = 124

DECLARE

emp_rec employees%ROWTYPE;

BEGIN

SELECT * INTO emp_rec FROM employees

WHERE employee_id = &employee_number;

INSERT INTO retired_emps(empno, ename, job, mgr,

hiredate, leavedate, sal, comm, deptno)

VALUES (emp_rec.employee_id, emp_rec.last_name,

emp_rec.job_id,emp_rec.manager_id,

emp_rec.hire_date, SYSDATE, emp_rec.salary,

emp_rec.commission_pct, emp_rec.department_id);

END;

/

%ROWTYPE Attribute
An example of the %ROWTYPE attribute is shown in the slide. If an employee is retiring,
information about that employee is added to a table that holds information about retired
employees. The user supplies the employee number. The record of the employee specified
by the user is retrieved from the employees table and stored in the emp_rec variable,
which is declared using the %ROWTYPE attribute.
The record that is inserted into the retired_emps table is shown below:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-13

Copyright © 2006, Oracle. All rights reserved.

Inserting a Record
by Using %ROWTYPE

...

DEFINE employee_number = 124

DECLARE

emp_rec retired_emps%ROWTYPE;

BEGIN

SELECT employee_id, last_name, job_id, manager_id,

hire_date, hire_date, salary, commission_pct,

department_id INTO emp_rec FROM employees

WHERE employee_id = &employee_number;

INSERT INTO retired_emps VALUES emp_rec;

END;

/

SELECT * FROM retired_emps;

Inserting a Record by Using %ROWTYPE
Compare the insert statement in the previous slide with the insert statement in this slide. The
emp_rec record is of type retired_emps. The number of fields in the record must be
equal to the number of field names in the INTO clause. You can use this record to insert
values into a table. This makes the code more readable.
The create statement that creates retired_emps is:

CREATE TABLE retired_emps
(EMPNO NUMBER(4), ENAME VARCHAR2(10),
JOB VARCHAR2(9),MGR NUMBER(4),
HIREDATE DATE, LEAVEDATE DATE,
SAL NUMBER(7,2), COMM NUMBER(7,2),
DEPTNO NUMBER(2))

Examine the select statement in the slide. We select hire_date twice and insert the
hire_date value in the leavedate field of retired_emps. No employee retires on
the hire date. The record that is inserted is shown below. (You will see how to update this in
the next slide.)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-14

Copyright © 2006, Oracle. All rights reserved.

Updating a Row in a Table
by Using a Record

SET SERVEROUTPUT ON

SET VERIFY OFF

DEFINE employee_number = 124

DECLARE

emp_rec retired_emps%ROWTYPE;

BEGIN

SELECT * INTO emp_rec FROM retired_emps;

emp_rec.leavedate:=SYSDATE;

UPDATE retired_emps SET ROW = emp_rec WHERE

empno=&employee_number;

END;

/

SELECT * FROM retired_emps;

Updating a Row in a Table by Using a Record
You have learned to insert a row by using a record. This slide shows you how to update a
row by using a record. The keyword ROW is used to represent the entire row. The code
shown in the slide updates the leavedate of the employee. The record is updated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-15

Copyright © 2006, Oracle. All rights reserved.

INDEX BY Tables or Associative Arrays

• Are PL/SQL structures with two columns:
– Primary key of integer or string data type
– Column of scalar or record data type

• Are unconstrained in size. However, the size
depends on the values that the key data type can
hold.

INDEX BY Tables or Associative Arrays
INDEX BY tables are composite types (collections) and are user defined. INDEX BY tables
can store data using a primary key value as the index, where the key values are not
sequential. INDEX BY tables are sets of key-value pairs. (You can imagine data stored in
two columns, although the key and value pairs are not exactly stored in columns.)
INDEX BY tables have only two columns:

• A column of integer or string type that acts as the primary key. The key can be
numeric, either BINARY_INTEGER or PLS_INTEGER. The BINARY_INTEGER
and PLS_INTEGER keys require less storage than NUMBER. They are used to
represent mathematical integers compactly and to implement arithmetic operations by
using machine arithmetic. Arithmetic operations on these data types are faster than
NUMBER arithmetic. The key can also be of type VARCHAR2 or one of its subtypes.
The examples in this course use the PLS_INTEGER data type for the key column.

• A column of scalar or record data type to hold values. If the column is of scalar type, it
can hold only one value. If the column is of record type, it can hold multiple values.

The INDEX BY tables are unconstrained in size. However, the key in the PLS_INTEGER
column is restricted to the maximum value that a PLS_INTEGER can hold. Note that the
keys can be both positive and negative. The keys in INDEX BY tables are not in sequence.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-16

Copyright © 2006, Oracle. All rights reserved.

Creating an INDEX BY Table

Syntax:

Declare an INDEX BY table to store the last names of
employees:

TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table%ROWTYPE
[INDEX BY PLS_INTEGER | BINARY_INTEGER
| VARCHAR2(<size>)];

identifier type_name;

...
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY PLS_INTEGER;
...
ename_table ename_table_type;

Creating an INDEX BY Table
There are two steps involved in creating an INDEX BY table.

1. Declare a TABLE data type.
2. Declare a variable of that data type.

In the syntax:
type_name

Is the name of the TABLE type (It is a type specifier used in
subsequent declarations of PL/SQL table identifiers.)

column_type Is any scalar or composite data type such as VARCHAR2, DATE,
NUMBER, or %TYPE (You can use the %TYPE attribute to provide
the column data type.)

identifier Is the name of the identifier that represents an entire PL/SQL table

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-17

Creating an INDEX BY Table (continued)
The NOT NULL constraint prevents nulls from being assigned to the PL/SQL table of that
type. Do not initialize the INDEX BY table.
INDEX BY tables can have the following element types: BINARY_INTEGER, BOOLEAN,
LONG, LONG RAW, NATURAL, NATURALN, PLS_INTEGER, POSITIVE, POSITIVEN,
SIGNTYPE, and STRING.
INDEX BY tables are not automatically populated when you create them. You must
programmatically populate the INDEX BY tables in your PL/SQL programs and then use
them.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-18

Copyright © 2006, Oracle. All rights reserved.

INDEX BY Table Structure

Unique key Value
... ...

1 Jones
5 Smith
3 Maduro

... ...

PLS_INTEGER Scalar

INDEX BY Table Structure
Like the size of a database table, the size of an INDEX BY table is unconstrained. That is,
the number of rows in an INDEX BY table can increase dynamically so that your INDEX BY
table grows as new rows are added.
INDEX BY tables can have one column and a unique identifier to that column, neither of
which can be named. The column can belong to any scalar or record data type, but the
primary key must belong to the types PLS_INTEGER or BINARY_INTEGER. You cannot
initialize an INDEX BY table in its declaration. An INDEX BY table is not populated at the
time of declaration. It contains no keys or values. An explicit executable statement is
required to populate the INDEX BY table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-19

Copyright © 2006, Oracle. All rights reserved.

Creating an INDEX BY Table

DECLARE
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY PLS_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY PLS_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;
IF ename_table.EXISTS(1) THEN
INSERT INTO ...
...

END;

/

Creating an INDEX BY Table
The example in the slide creates two INDEX BY tables.
Use the key of the INDEX BY table to access an element in the table.
Syntax:

INDEX_BY_table_name(index)

Here, index belongs to type PLS_INTEGER.
The following example shows how to reference the third row in an INDEX BY table called
ename_table:

ename_table(3)

The magnitude range of a PLS_INTEGER is –2147483647 to 2147483647, so the primary
key value can be negative. Indexing does not need to start with 1.
Note: The exists(i)method returns TRUE if a row with index i is returned. Use the
exists method to prevent an error that is raised in reference to a nonexistent table
element.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-20

Copyright © 2006, Oracle. All rights reserved.

Using INDEX BY Table Methods

The following methods make INDEX BY tables easier
to use:
• EXISTS

• COUNT

• FIRST and LAST

• PRIOR

• NEXT

• DELETE

Using INDEX BY Table Methods
An INDEX BY table method is a built-in procedure or function that operates on a PL/SQL
table and is called by using dot notation.
Syntax: table_name.method_name[(parameters)]

Method Description
EXISTS(n) Returns TRUE if the nth element in a PL/SQL table exists
COUNT Returns the number of elements that a PL/SQL table currently

contains
FIRST
LAST

• Returns the first and last (smallest and largest) index numbers in
a PL/SQL table

• Returns NULL if the PL/SQL table is empty
PRIOR(n) Returns the index number that precedes index n in a PL/SQL table
NEXT(n) Returns the index number that succeeds index n in a PL/SQL table
DELETE • DELETE removes all elements from a PL/SQL table.

• DELETE(n) removes the nth element from a PL/SQL table.
• DELETE(m, n) removes all elements in the range m ... n from

a PL/SQL table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-21

Copyright © 2006, Oracle. All rights reserved.

INDEX BY Table of Records

Define an INDEX BY table variable to hold an entire row
from a table.

Example
DECLARE
TYPE dept_table_type IS TABLE OF

departments%ROWTYPE
INDEX BY PLS_INTEGER;

dept_table dept_table_type;

-- Each element of dept_table is a record

INDEX BY Table of Records
At any particular time, an INDEX BY table declared as a table of scalar data type can store
the details of only one column in a database table. There is often a need to store all the
columns retrieved by a query. The INDEX BY table of records offers a solution to this.
Because only one table definition is needed to hold information about all the fields of a
database table, the table of records greatly increases the functionality of INDEX BY tables.

Referencing a Table of Records
In the example in the slide, you can refer to fields in the dept_table record because each
element of the table is a record.
Syntax:

table(index).field

Example:
dept_table(15).location_id := 1700;

location_id represents a field in dept_table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-22

Referencing a Table of Records (continued)
You can use the %ROWTYPE attribute to declare a record that represents a row in a database
table. The differences between the %ROWTYPE attribute and the composite data type
PL/SQL record include the following:

• PL/SQL record types can be user defined, whereas %ROWTYPE implicitly defines the
record.

• PL/SQL records enable you to specify the fields and their data types while declaring
them. When you use %ROWTYPE, you cannot specify the fields. The %ROWTYPE
attribute represents a table row with all the fields based on the definition of that table.

• User-defined records are static. %ROWTYPE records are dynamic because the table
structures are altered in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-23

Copyright © 2006, Oracle. All rights reserved.

INDEX BY Table of Records: Example

SET SERVEROUTPUT ON
DECLARE

TYPE emp_table_type IS TABLE OF
employees%ROWTYPE INDEX BY PLS_INTEGER;

my_emp_table emp_table_type;
max_count NUMBER(3):= 104;

BEGIN
FOR i IN 100..max_count
LOOP
SELECT * INTO my_emp_table(i) FROM employees
WHERE employee_id = i;

END LOOP;
FOR i IN my_emp_table.FIRST..my_emp_table.LAST
LOOP

DBMS_OUTPUT.PUT_LINE(my_emp_table(i).last_name);
END LOOP;

END;
/

INDEX BY Table of Records: Example
The example in the slide declares an INDEX BY table of records emp_table_type to
temporarily store the details of employees whose employee IDs are between 100 and 104.
Using a loop, the information of the employees from the EMPLOYEES table is retrieved and
stored in the INDEX BY table. Another loop is used to print the last names from the INDEX
BY table. Note the use of the first and last methods in the example. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-24

Copyright © 2006, Oracle. All rights reserved.

Nested Tables

1
2
3
4
..

2 GB

Bombay
Sydney
Oxford
London
....

Nested Tables
The functionality of nested tables is similar to that of INDEX BY tables; however, there are
differences in the nested table implementation. The nested table is a valid data type in a
schema-level table, but an INDEX BY table is not. The key type for nested tables is not
PLS_INTEGER. The key cannot be a negative value (unlike in the INDEX BY table).
Though we are referring to the first column as key, there is no key in a nested table. There is
a column with numbers in sequence that is considered as the key column. Elements can be
deleted from anywhere in a nested table, leaving a sparse table with nonsequential keys. The
rows of a nested table are not in any particular order. When you retrieve values from a
nested table, the rows are given consecutive subscripts starting from 1. Nested tables can be
stored in the database (unlike INDEX BY tables).
Syntax:

TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]

| table.%ROWTYPE

In Oracle Database 10g, nested tables can be compared for equality. You can check if an
element exists in a nested table and also if a nested table is a subset of another.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-25

Nested Tables (continued)
Example:

TYPE location_type IS TABLE OF locations.city%TYPE;
offices location_type;

If you do not initialize an INDEX BY table, it is empty. If you do not initialize a nested table,
it is automatically initialized to NULL. You can initialize the offices nested table by
using a constructor:

offices := location_type('Bombay', 'Tokyo','Singapore',
'Oxford');

Complete example:
SET SERVEROUTPUT ON
DECLARE

TYPE location_type IS TABLE OF locations.city%TYPE;
offices location_type;
table_count NUMBER;

BEGIN
offices := location_type('Bombay', 'Tokyo','Singapore',
'Oxford');

table_count := offices.count();
FOR i in 1..table_count LOOP

DBMS_OUTPUT.PUT_LINE(offices(i));
END LOOP;

END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-26

Copyright © 2006, Oracle. All rights reserved.

Bombay
Sydney
Oxford
London
....

VARRAY

Tokyo

1
2
3
4
..
10

VARRAY

A variable-size array (VARRAY) is similar to a PL/SQL table, except that a VARRAY is
constrained in size. VARRAY is valid in a schema-level table. Items of VARRAY type are
called VARRAYs. VARRAYs have a fixed upper bound. You have to specify the upper bound
when you declare them. This is similar to arrays in the C language. The maximum size of a
VARRAY is 2 GB, as in nested tables. The distinction between a nested table and a VARRAY
is the physical storage mode. The elements of a VARRAY are stored contiguously in memory
and not in the database. You can create a VARRAY type in the database by using SQL.
Example:

TYPE location_type IS VARRAY(3) OF locations.city%TYPE;
offices location_type;

The size of this VARRAY is restricted to 3. You can initialize a VARRAY by using
constructors. If you try to initialize the VARRAY with more than three elements, a “Subscript
outside of limit” error message is displayed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-27

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Define and reference PL/SQL variables of

composite data types
– PL/SQL record
– INDEX BY table
– INDEX BY table of records

• Define a PL/SQL record by using the %ROWTYPE
attribute

Summary
A PL/SQL record is a collection of individual fields that represent a row in the table. By
using records, you can group the data into one structure and then manipulate this structure as
one entity or logical unit. This helps reduce coding and keeps the code easier to maintain
and understand.
Like PL/SQL records, the table is another composite data type. INDEX BY tables are objects
of TABLE type and look similar to database tables but with a slight difference. INDEX BY
tables use a primary key to give you array-like access to rows. The size of an INDEX BY
table is unconstrained. INDEX BY tables store a key and a value pair. The key column must
be of the PLS_INTEGER or BINARY_INTEGER type; the column that holds the value can
be of any data type.
The key type for nested tables is not PLS_INTEGER. The key cannot have a negative value,
unlike the case with INDEX BY tables. The key must also be in a sequence.
Variable-size arrays (VARRAYs) are similar to PL/SQL tables, except that a VARRAY is
constrained in size.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-28

Copyright © 2006, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
• Declaring INDEX BY tables
• Processing data by using INDEX BY tables
• Declaring a PL/SQL record
• Processing data by using a PL/SQL record

Practice 6: Overview
In this practice, you define, create, and use INDEX BY tables and a PL/SQL record.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-29

Practice 6
1. Write a PL/SQL block to print information about a given country.

a. Declare a PL/SQL record based on the structure of the countries table.
b. Use the DEFINE command to define a variable countryid. Assign CA to

countryid. Pass the value to the PL/SQL block through an iSQL*Plus
substitution variable.

c. In the declarative section, use the %ROWTYPE attribute and declare the variable
country_record of type countries.

d. In the executable section, get all the information from the countries table by
using countryid. Display selected information about the country. A sample
output is shown below.

e. You may want to execute and test the PL/SQL block for the countries with the
IDs DE, UK, US.

2. Create a PL/SQL block to retrieve the name of some departments from the
departments table and print each department name on the screen, incorporating an
INDEX BY table. Save the script as lab_06_02_soln.sql.

a. Declare an INDEX BY table dept_table_type of type
departments.department_name. Declare a variable my_dept_table
of type dept_table_type to temporarily store the name of the departments.

b. Declare two variables: loop_count and deptno of type NUMBER. Assign 10
to loop_count and 0 to deptno.

c. Using a loop, retrieve the name of 10 departments and store the names in the
INDEX BY table. Start with department_id 10. Increase deptno by 10 for
every iteration of the loop. The following table shows the department_id for
which you should retrieve the department_name and store in the INDEX BY
table.

DEPARTMENT_ID DEPARTMENT_NAME

10 Administration

20 Marketing

30 Purchasing

40 Human Resources

50 Shipping

60 IT

70 Public Relations

80 Sales

90 Executive

100 Finance

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-30

Practice 6 (continued)
d. Using another loop, retrieve the department names from the INDEX BY table and

display them.
e. Execute and save your script as lab_06_02_soln.sql. The output is shown

below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 6-31

Practice 6 (continued)
3. Modify the block that you created in question 2 to retrieve all information about each

department from the departments table and display the information. Use an
INDEX BY table of records.

a. Load the script lab_06_02_soln.sql.
b. You have declared the INDEX BY table to be of type

departments.department_name. Modify the declaration of the INDEX
BY table, to temporarily store the number, name, and location of the departments.
Use the %ROWTYPE attribute.

c. Modify the select statement to retrieve all department information currently in
the departments table and store it in the INDEX BY table.

d. Using another loop, retrieve the department information from the INDEX BY
table and display the information. A sample output is shown below.

4. Load the script lab_05_03_soln.sql.
a. Look for the comment “DECLARE AN INDEX BY TABLE OF TYPE

VARCHAR2(50). CALL IT ename_table_type” and include the declaration.
b. Look for the comment “DECLARE A VARIABLE ename_table OF TYPE

ename_table_type” and include the declaration.
c. Save your script as lab_06_04_soln.sql.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Using Explicit Cursors

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Distinguish between implicit and explicit cursors
• Discuss the reasons for using explicit cursors
• Declare and control explicit cursors
• Use simple loops and cursor FOR loops to fetch

data
• Declare and use cursors with parameters
• Lock rows with the FOR UPDATE clause
• Reference the current row with the WHERE CURRENT

clause

Lesson Aim
You have learned about implicit cursors that are automatically created by PL/SQL when you
execute a SQL SELECT or DML statement. In this lesson, you learn about explicit cursors.
You learn to differentiate between implicit and explicit cursors. You also learn to declare
and control simple cursors as well as cursors with parameters.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-3

Copyright © 2006, Oracle. All rights reserved.

Cursors

Every SQL statement executed by the Oracle server
has an associated individual cursor:
• Implicit cursors: Declared and managed by

PL/SQL for all DML and PL/SQL SELECT
statements

• Explicit cursors: Declared and managed by the
programmer

Cursors
The Oracle server uses work areas (called private SQL areas) to execute SQL statements
and to store processing information. You can use explicit cursors to name a private SQL area
and to access its stored information.

The Oracle server implicitly opens a cursor to process each SQL statement that is not
associated with an explicitly declared cursor. Using PL/SQL, you can refer to the most
recent implicit cursor as the SQL cursor.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly for all
DML and PL/SQL SELECT statements.

Explicit For queries that return more than one row, explicit cursors are
declared and managed by the programmer and manipulated
through specific statements in the block’s executable actions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-4

Copyright © 2006, Oracle. All rights reserved.

Explicit Cursor Operations

Active set

Table

100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

. . .

. . .

. . .

139 Seo ST_CLERK

140 Patel ST_CLERK

. . .

Explicit Cursor Operations
You declare explicit cursors in PL/SQL when you have a SELECT statement that returns
multiple rows. You can process each row returned by the SELECT statement.
The set of rows returned by a multiple-row query is called the active set. Its size is the
number of rows that meet your search criteria. The diagram in the slide shows how an
explicit cursor “points” to the current row in the active set. This enables your program to
process the rows one at a time.
Explicit cursor functions:

• Can do row-by-row processing beyond the first row returned by a query
• Keep track of which row is currently being processed
• Enable the programmer to manually control explicit cursors in the PL/SQL block

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-5

Copyright © 2006, Oracle. All rights reserved.

Controlling Explicit Cursors

• Load the
current
row into
variables.

FETCH

• Test for
existing
rows.

EMPTY?

• Return to
FETCH if
rows are
found.

No

• Release the
active set.

CLOSE
Yes

• Create a
named
SQL area.

DECLARE

• Identify the
active set.

OPEN

Controlling Explicit Cursors
Now that you have a conceptual understanding of cursors, review the steps to use them.

1. In the declarative section of a PL/SQL block, declare the cursor by naming it and
defining the structure of the query to be associated with it.

2. Open the cursor.
The OPEN statement executes the query and binds any variables that are referenced.
Rows identified by the query are called the active set and are now available for
fetching.

3. Fetch data from the cursor.
In the flow diagram shown in the slide, after each fetch you test the cursor for any
existing row. If there are no more rows to process, you must close the cursor.

4. Close the cursor.
The CLOSE statement releases the active set of rows. It is now possible to reopen the
cursor to establish a fresh active set.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-6

Copyright © 2006, Oracle. All rights reserved.

Controlling Explicit Cursors

Fetch a row.

Close the cursor.

Cursor
pointer

Open the cursor.1

2

3

Cursor
pointer

Cursor
pointer

Controlling Explicit Cursors (continued)
A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the
cursor. The cursor marks the current position in the active set.

1. The OPEN statement executes the query associated with the cursor, identifies the active
set, and positions the cursor at the first row.

2. The FETCH statement retrieves the current row and advances the cursor to the next
row until either there are no more rows or until a specified condition is met.

3. The CLOSE statement releases the cursor.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-7

Copyright © 2006, Oracle. All rights reserved.

Declaring the Cursor

Syntax:

CURSOR cursor_name IS

select_statement;

Examples
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

DECLARE
locid NUMBER:= 1700;
CURSOR dept_cursor IS
SELECT * FROM departments
WHERE location_id = locid;

...

Declaring the Cursor
The syntax to declare a cursor is shown in the slide. In the syntax:

cursor_name Is a PL/SQL identifier
select_statement Is a SELECT statement without an INTO clause

The active set of a cursor is determined by the SELECT statement in the cursor declaration.
It is mandatory to have an INTO clause for a SELECT statement in PL/SQL. However, note
that the SELECT statement in the cursor declaration cannot have an INTO clause. That is
because you are only defining a cursor in the declarative section and not retrieving any rows
into the cursor.
Note

• Do not include the INTO clause in the cursor declaration because it appears later in the
FETCH statement.

• If processing rows in a specific sequence is required, use the ORDER BY clause in the
query.

• The cursor can be any valid ANSI SELECT statement, including joins, subqueries, and
so on.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-8

Declaring the Cursor (continued)
The emp_cursor cursor is declared to retrieve the employee_id and last_name
columns for those employees working in the department with a department_id of 30.
The dept_cursor cursor is declared to retrieve all the details for the department with the
location_id 1700. Note that a variable is used while declaring the cursor. These
variables are considered bind variables, which must be visible when you are declaring the
cursor. These variables are examined only once at the time the cursor opens. You have
learned that explicit cursors are used when you have to retrieve and operate on multiple rows
in PL/SQL. However, this example shows that you can use the explicit cursor even if your
SELECT statement returns only one row.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-9

Copyright © 2006, Oracle. All rights reserved.

Opening the Cursor

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

...
BEGIN
OPEN emp_cursor;

Opening the Cursor
The OPEN statement executes the query associated with the cursor, identifies the active set,
and positions the cursor pointer at the first row. The OPEN statement is included in the
executable section of the PL/SQL block.
OPEN is an executable statement that performs the following operations:

1. Dynamically allocates memory for a context area
2. Parses the SELECT statement
3. Binds the input variables (sets the values for the input variables by obtaining their

memory addresses)
4. Identifies the active set (the set of rows that satisfy the search criteria). Rows in the

active set are not retrieved into variables when the OPEN statement is executed.
Rather, the FETCH statement retrieves the rows from the cursor to the variables.

5. Positions the pointer to the first row in the active set
Note: If the query returns no rows when the cursor is opened, PL/SQL does not raise an
exception. However, you can test the status of the implicit cursor after a fetch by using the
SQL%ROWCOUNT cursor attribute. For explicit cursors, use <cursor_name>%ROWCOUNT.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-10

Copyright © 2006, Oracle. All rights reserved.

Fetching Data from the Cursor

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
empno employees.employee_id%TYPE;
lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
FETCH emp_cursor INTO empno, lname;
DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);
...

END;
/

Fetching Data from the Cursor
The FETCH statement retrieves the rows from the cursor one at a time. After each fetch, the
cursor advances to the next row in the active set. You can use the %NOTFOUND attribute to
determine whether the entire active set has been retrieved.
Consider the example shown in the slide. Two variables, empno and lname, are declared
to hold the fetched values from the cursor. Examine the FETCH statement.
The output of the PL/SQL block is as follows:

You have successfully fetched the values from the cursor to the variables. However, there
are six employees in department 30, but only one row was fetched. To fetch all rows, you
must use loops. In the next slide, you see how a loop is used to fetch all the rows.
The FETCH statement performs the following operations:

1. Reads the data for the current row into the output PL/SQL variables
2. Advances the pointer to the next row in the active set

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-11

Fetching Data from the Cursor (continued)
• Include the same number of variables in the INTO clause of the FETCH statement as

there are columns in the SELECT statement, and be sure that the data types are
compatible.

• Match each variable to correspond to the columns positionally.
• Alternatively, define a record for the cursor and reference the record in the FETCH

INTO clause.
• Test to see whether the cursor contains rows. If a fetch acquires no values, there are no

rows left to process in the active set and no error is recorded.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-12

Copyright © 2006, Oracle. All rights reserved.

Fetching Data from the Cursor

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
empno employees.employee_id%TYPE;
lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO empno, lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END LOOP;
...

END;
/

Fetching Data from the Cursor (continued)
Observe that a simple LOOP is used to fetch all the rows. Also, the cursor attribute
%NOTFOUND is used to test for the exit condition. The output of the PL/SQL block is:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-13

Copyright © 2006, Oracle. All rights reserved.

Closing the Cursor

...
LOOP
FETCH emp_cursor INTO empno, lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END LOOP;
CLOSE emp_cursor;
END;
/

Closing the Cursor
The CLOSE statement disables the cursor, releases the context area, and undefines the active
set. Close the cursor after completing the processing of the FETCH statement. You can
reopen the cursor if required. A cursor can be reopened only if it is closed. If you attempt to
fetch data from a cursor after it has been closed, then an INVALID_CURSOR exception will
be raised.
Note: Although it is possible to terminate the PL/SQL block without closing cursors, you
should make it a habit to close any cursor that you declare explicitly to free up resources.
There is a maximum limit on the number of open cursors per session, which is determined
by the OPEN_CURSORS parameter in the database parameter file. (OPEN_CURSORS = 50
by default.)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-14

Copyright © 2006, Oracle. All rights reserved.

Cursors and Records

Process the rows of the active set by fetching values
into a PL/SQL record.
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
emp_record emp_cursor%ROWTYPE;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO emp_record;

...

Cursors and Records
You have already seen that you can define records that have the structure of columns in a
table. You can also define a record based on the selected list of columns in an explicit
cursor. This is convenient for processing the rows of the active set, because you can simply
fetch into the record. Therefore, the values of the row are loaded directly into the
corresponding fields of the record. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-15

Copyright © 2006, Oracle. All rights reserved.

Cursor FOR Loops

Syntax:

• The cursor FOR loop is a shortcut to process
explicit cursors.

• Implicit open, fetch, exit, and close occur.
• The record is implicitly declared.

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

Cursor FOR Loops
You have learned to fetch data from cursors by using simple loops. You now learn to use a
cursor FOR loop, which processes rows in an explicit cursor. It is a shortcut because the
cursor is opened, a row is fetched once for each iteration in the loop, the loop exits when the
last row is processed, and the cursor is closed automatically. The loop itself is terminated
automatically at the end of the iteration where the last row is fetched.
In the syntax:

record_name Is the name of the implicitly declared record
cursor_name Is a PL/SQL identifier for the previously declared cursor

Guidelines
• Do not declare the record that controls the loop; it is declared implicitly.
• Test the cursor attributes during the loop, if required.
• Supply the parameters for a cursor, if required, in parentheses following the cursor

name in the FOR statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-16

Copyright © 2006, Oracle. All rights reserved.

Cursor FOR Loops

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

BEGIN
FOR emp_record IN emp_cursor
LOOP
DBMS_OUTPUT.PUT_LINE(emp_record.employee_id
||' ' ||emp_record.last_name);
END LOOP;

END;
/

Cursor FOR Loops (continued)
The example that was used to demonstrate the usage of a simple loop to fetch data from
cursors is rewritten to use the cursor FOR loop.
The emp_record is the record that is implicitly declared. You can access the fetched data
with this implicit record (as shown in the slide). Observe that no variables are declared to
hold the fetched data using the INTO clause. The code does not have OPEN and CLOSE
statements to open and close the cursor, respectively.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-17

Copyright © 2006, Oracle. All rights reserved.

Explicit Cursor Attributes

Obtain status information about a cursor.

Boolean Evaluates to TRUE if the cursor is
open

Evaluates to TRUE if the most recent
fetch does not return a row
Evaluates to TRUE if the most recent
fetch returns a row; complement of
%NOTFOUND

Evaluates to the total number of
rows returned so far

Boolean

Boolean

Number

%ISOPEN

%NOTFOUND

%FOUND

%ROWCOUNT

Attribute Type Description

Explicit Cursor Attributes
As with implicit cursors, there are four attributes for obtaining status information about a
cursor. When appended to the cursor variable name, these attributes return useful
information about the execution of a cursor manipulation statement.
Note: You cannot reference cursor attributes directly in a SQL statement. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-18

Copyright © 2006, Oracle. All rights reserved.

%ISOPEN Attribute

• Fetch rows only when the cursor is open.
• Use the %ISOPEN cursor attribute before

performing a fetch to test whether the cursor is
open.

Example

IF NOT emp_cursor%ISOPEN THEN
OPEN emp_cursor;

END IF;
LOOP
FETCH emp_cursor...

%ISOPEN Attribute
• You can fetch rows only when the cursor is open. Use the %ISOPEN cursor attribute to

determine whether the cursor is open.
• Fetch rows in a loop. Use cursor attributes to determine when to exit the loop.
• Use the %ROWCOUNT cursor attribute to do the following:

- Process an exact number of rows
- Fetch the rows in a loop and determine when to exit the loop

Note: %ISOPEN returns the status of the cursor: TRUE if open and FALSE if not.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-19

Copyright © 2006, Oracle. All rights reserved.

%ROWCOUNT and %NOTFOUND: Example

SET SERVEROUTPUT ON
DECLARE
empno employees.employee_id%TYPE;
ename employees.last_name%TYPE;
CURSOR emp_cursor IS SELECT employee_id,
last_name FROM employees;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO empno, ename;
EXIT WHEN emp_cursor%ROWCOUNT > 10 OR

emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(empno)

||' '|| ename);
END LOOP;
CLOSE emp_cursor;

END ;
/

%ROWCOUNT and %NOTFOUND: Example
The example in the slide retrieves the first ten employees one by one. This example shows
how %ROWCOUNT and %NOTFOUND attributes can be used for exit conditions in a loop.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-20

Copyright © 2006, Oracle. All rights reserved.

Cursor FOR Loops Using Subqueries

There is no need to declare the cursor.

Example
SET SERVEROUTPUT ON
BEGIN
FOR emp_record IN (SELECT employee_id, last_name
FROM employees WHERE department_id =30)
LOOP
DBMS_OUTPUT.PUT_LINE(emp_record.employee_id ||'
'||emp_record.last_name);
END LOOP;

END;
/

Cursor FOR Loops Using Subqueries
Note that there is no declarative section in this PL/SQL block. The difference between the
cursor FOR loops using subqueries and the cursor FOR loop lies in the cursor declaration. If
you are writing cursor FOR loops using subqueries, you need not declare the cursor in the
declarative section. You have to provide the SELECT statement that determines the active
set in the loop itself.
The example that was used to illustrate a cursor FOR loop is rewritten to illustrate a cursor
FOR loop using subqueries.
Note: You cannot reference explicit cursor attributes if you use a subquery in a cursor FOR
loop because you cannot give the cursor an explicit name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-21

Copyright © 2006, Oracle. All rights reserved.

Cursors with Parameters

Syntax:

• Pass parameter values to a cursor when the
cursor is opened and the query is executed.

• Open an explicit cursor several times with a
different active set each time.

CURSOR cursor_name
[(parameter_name datatype, ...)]

IS
select_statement;

OPEN cursor_name(parameter_value,.....) ;

Cursors with Parameters
You can pass parameters to a cursor in a cursor FOR loop. This means that you can open and
close an explicit cursor several times in a block, returning a different active set on each
occasion. For each execution, the previous cursor is closed and reopened with a new set of
parameters.
Each formal parameter in the cursor declaration must have a corresponding actual parameter
in the OPEN statement. Parameter data types are the same as those for scalar variables, but
you do not give them sizes. The parameter names are for references in the query expression
of the cursor.
In the syntax:

The parameter notation does not offer greater functionality; it simply allows you to specify
input values easily and clearly. This is particularly useful when the same cursor is referenced
repeatedly.

Is a SELECT statement without the INTO clauseselect_statement
Is the scalar data type of the parameterdatatype
Is the name of a parameterparameter_name
Is a PL/SQL identifier for the declared cursorcursor_name

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-22

Copyright © 2006, Oracle. All rights reserved.

Cursors with Parameters

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor (deptno NUMBER) IS
SELECT employee_id, last_name
FROM employees
WHERE department_id = deptno;
dept_id NUMBER;
lname VARCHAR2(15);

BEGIN
OPEN emp_cursor (10);
...
CLOSE emp_cursor;
OPEN emp_cursor (20);
...

Cursors with Parameters (continued)
Parameter data types are the same as those for scalar variables, but you do not give them
sizes. The parameter names are for reference in the cursor’s query. In the following
example, a cursor is declared and is defined with one parameter:

DECLARE
CURSOR emp_cursor(deptno NUMBER) IS SELECT ...

The following statements open the cursor and return different active sets:
OPEN emp_cursor(10);
OPEN emp_cursor(20);

You can pass parameters to the cursor that is used in a cursor FOR loop:
DECLARE
CURSOR emp_cursor(p_deptno NUMBER, p_job VARCHAR2)IS

SELECT ...
BEGIN

FOR emp_record IN emp_cursor(10, 'Sales') LOOP ...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-23

Copyright © 2006, Oracle. All rights reserved.

FOR UPDATE Clause

Syntax:

• Use explicit locking to deny access to other
sessions for the duration of a transaction.

• Lock the rows before the update or delete.

SELECT ...
FROM ...
FOR UPDATE [OF column_reference][NOWAIT | WAIT n];

FOR UPDATE Clause
If there are multiple sessions for a single database, there is the possibility that the rows of a
particular table were updated after you opened your cursor. You see the updated data only
when you reopen the cursor. Therefore, it is better to have locks on the rows before you
update or delete rows. You can lock the rows with the FOR UPDATE clause in the cursor
query.
In the syntax:

The FOR UPDATE clause is the last clause in a select statement, even after ORDER BY (if it
exists). When querying multiple tables, you can use the FOR UPDATE clause to confine row
locking to particular tables. FOR UPDATE OF col_name(s) locks rows only in tables
that contain col_name(s).

Returns an Oracle server error if the rows are
locked by another session.

NOWAIT

Is a column in the table against which the query is
performed (A list of columns may also be used.)

column_reference
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-24

The FOR UPDATE Clause (continued)
The SELECT ... FOR UPDATE statement identifies the rows that are to be updated or
deleted, and then locks each row in the result set. This is useful when you want to base an
update on the existing values in a row. In that case, you must make sure that the row is not
changed by another session before the update.
The optional NOWAIT keyword tells the Oracle server not to wait if requested rows have
been locked by another user. Control is immediately returned to your program so that it can
do other work before trying again to acquire the lock. If you omit the NOWAIT keyword, the
Oracle server waits until the rows are available.
Example:

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name, FROM employees
WHERE department_id = 80 FOR UPDATE OF salary NOWAIT;
...

If the Oracle server cannot acquire the locks on the rows it needs in a SELECT FOR
UPDATE, it waits indefinitely. Use NOWAIT to handle such situations. If the rows are locked
by another session and you have specified NOWAIT, opening the cursor results in an error.
You can try to open the cursor later. You can use WAIT instead of NOWAIT, specify the
number of seconds to wait, and determine whether the rows are unlocked. If the rows are
still locked after n seconds, an error is returned.
It is not mandatory for the FOR UPDATE OF clause to refer to a column, but it is
recommended for better readability and maintenance.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-25

Copyright © 2006, Oracle. All rights reserved.

WHERE CURRENT OF Clause

Syntax:

• Use cursors to update or delete the current row.
• Include the FOR UPDATE clause in the cursor query

to lock the rows first.
• Use the WHERE CURRENT OF clause to reference the

current row from an explicit cursor.

WHERE CURRENT OF cursor ;

UPDATE employees
SET salary = ...
WHERE CURRENT OF emp_cursor;

WHERE CURRENT OF Clause
The WHERE CURRENT OF clause is used in conjunction with the FOR UPDATE clause to
refer to the current row in an explicit cursor. The WHERE CURRENT OF clause is used in the
UPDATE or DELETE statement, whereas the FOR UPDATE clause is specified in the cursor
declaration. You can use the combination for updating and deleting the current row from the
corresponding database table. This enables you to apply updates and deletes to the row
currently being addressed, without the need to explicitly reference the row ID. You must
include the FOR UPDATE clause in the cursor query so that the rows are locked on OPEN.
In the syntax:

cursor Is the name of a declared cursor (The cursor must have been
declared with the FOR UPDATE clause.)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-26

Copyright © 2006, Oracle. All rights reserved.

Cursors with Subqueries

DECLARE
CURSOR my_cursor IS
SELECT t1.department_id, t1.department_name,

t2.staff
FROM departments t1, (SELECT department_id,

COUNT(*) AS staff
FROM employees
GROUP BY department_id) t2

WHERE t1.department_id = t2.department_id
AND t2.staff >= 3;

...

Example

Cursors with Subqueries
A subquery is a query (usually enclosed by parentheses) that appears within another SQL
statement. When evaluated, the subquery provides a value or set of values to the outer query.
Subqueries are often used in the WHERE clause of a select statement. They can also be used
in the FROM clause, creating a temporary data source for that query.
In the example in the slide, the subquery creates a data source consisting of department
numbers and the number of employees in each department (known by the alias STAFF). A
table alias, t2, refers to this temporary data source in the FROM clause. When this cursor is
opened, the active set contains the department number, department name, and total number
of employees working for those departments that have three or more employees.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-27

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Distinguish cursor types:

– Implicit cursors are used for all DML statements
and single-row queries.

– Explicit cursors are used for queries of zero,
one, or more rows.

• Create and handle explicit cursors
• Use simple loops and cursor FOR loops to handle

multiple rows in the cursors
• Evaluate the cursor status by using the cursor

attributes
• Use the FOR UPDATE and WHERE CURRENT OF

clauses to update or delete the current fetched
row

Summary
The Oracle server uses work areas to execute SQL statements and store processing
information. You can use a PL/SQL construct called a cursor to name a work area and
access its stored information. There are two kinds of cursors: implicit and explicit. PL/SQL
implicitly declares a cursor for all SQL data manipulation statements, including queries that
return only one row. For queries that return more than one row, you must explicitly declare a
cursor to process the rows individually.
Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN
%NOTFOUND, and %ROWCOUNT. When appended to the cursor variable name, these
attributes return useful information about the execution of a SQL statement. You can use
cursor attributes in procedural statements but not in SQL statements.
Use simple loops or cursor FOR loops to operate on the multiple rows fetched by the cursor.
If you are using simple loops, you have to open, fetch, and close the cursor; however, cursor
FOR loops do this implicitly. If you are updating or deleting rows, lock the rows by using a
FOR UPDATE clause. This ensures that the data you are using is not updated by another
session after you open the cursor. Use a WHERE CURRENT OF clause in conjunction with
the FOR UPDATE clause to reference the current row fetched by the cursor.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-28

Copyright © 2006, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:
• Declaring and using explicit cursors to query rows

of a table
• Using a cursor FOR loop
• Applying cursor attributes to test the cursor status
• Declaring and using cursors with parameters
• Using the FOR UPDATE and WHERE CURRENT OF

clauses

Practice 7: Overview
In this practice, you apply your knowledge of cursors to process a number of rows from a
table and populate another table with the results using a cursor FOR loop. You also write a
cursor with parameters.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-29

Practice 7
1. Create a PL/SQL block that determines the top n salaries of the employees.

a. Execute the script lab_07_01.sql to create a new table, top_salaries,
for storing the salaries of the employees.

b. Accept a number n from the user where n represents the number of top n earners
from the employees table. For example, to view the top five salaries, enter 5.
Note: Use the DEFINE command to define a variable p_num to provide the
value for n. Pass the value to the PL/SQL block through an iSQL*Plus
substitution variable.

c. In the declarative section, declare two variables: num of type NUMBER to accept
the substitution variable p_num, sal of type employees.salary. Declare a
cursor, emp_cursor, that retrieves the salaries of employees in descending
order. Remember that the salaries should not be duplicated.

d. In the executable section, open the loop and fetch top n salaries and insert them
into top_salaries table. You can use a simple loop to operate on the data.
Also, try and use %ROWCOUNT and %FOUND attributes for the exit condition.

e. After inserting into the top_salaries table, display the rows with a SELECT
statement. The output shown represents the five highest salaries in the
employees table.

f. Test a variety of special cases, such as n = 0 or where n is greater than the
number of employees in the employees table. Empty the top_salaries
table after each test.

2. Create a PL/SQL block that does the following:
a. Use the DEFINE command to define a variable p_deptno to provide the

department ID.
b. In the declarative section, declare a variable deptno of type NUMBER and

assign the value of p_deptno.
c. Declare a cursor, emp_cursor, that retrieves the last_name, salary, and

manager_id of the employees working in the department specified in
deptno.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-30

Practice 7 (continued)
d. In the executable section use the cursor FOR loop to operate on the data

retrieved. If the salary of the employee is less than 5000 and if the manager ID is
either 101 or 124, display the message <<last_name>> Due for a raise.
Otherwise, display the message <<last_name>> Not due for a raise.

e. Test the PL/SQL block for the following cases:

Department ID Message
10 Whalen Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Weiss Not Due for a raise
Fripp Not Due for a raise
Kaufling Not Due for a raise
Vollman Not Due for a raise
Mourgas Not Due for a raise
. . .
. . .
Rajs Due for a raise

80 Russel Not Due for a raise
Partners Not Due for a raise
Errazuriz Not Due for a raise
Cambrault Not Due for a raise
. . .
. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-31

Practice 7 (continued)

3. Write a PL/SQL block, which declares and uses cursors with parameters.
In a loop, use a cursor to retrieve the department number and the department name
from the departments table for a department whose department_id is less than
100. Pass the department number to another cursor as a parameter to retrieve from the
employees table the details of employee last name, job, hire date, and salary of
those employees whose employee_id is less than 120 and who work in that
department.

a. In the declarative section, declare a cursor dept_cursor to retrieve
department_id, department_name for those departments with
department_id less than 100. Order by department_id.

b. Declare another cursor emp_cursor that takes the department number as
parameter and retrieves last_name, job_id, hire_date, and salary of
those employees with employee_id of less than 120 and who work in that
department.

c. Declare variables to hold the values retrieved from each cursor. Use the %TYPE
attribute while declaring variables.

d. Open the dept_cursor, use a simple loop and fetch values into the variables
declared. Display the department number and department name.

e. For each department, open the emp_cursor by passing the current department
number as a parameter. Start another loop and fetch the values of emp_cursor
into variables and print all the details retrieved from the employees table.
Note: You may want to print a line after you have displayed the details of each
department. Use appropriate attributes for the exit condition. Also determine
whether a cursor is already open before opening the cursor.

f. Close all the loops and cursors, and end the executable section. Execute the
script.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-32

Practice 7 (continued)

The sample output is shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 7-33

Practice 7 (continued)
4. Load the script lab_06_04_soln.sql.

a. Look for the comment “DECLARE A CURSOR CALLED emp_records TO
HOLD salary, first_name, and last_name of employees” and include the
declaration. Create the cursor such that it retrieves the salary, first_name, and
last_name of employees in the department specified by the user (substitution
variable emp_deptid). Use the FOR UPDATE clause.

b. Look for the comment “INCLUDE EXECUTABLE SECTION OF INNER
BLOCK HERE” and start the executable block.

c. Only employees working in the departments with department_id 20, 60,
80,100, and 110 are eligible for raises this quarter. Check if the user has entered
any of these department IDs. If the value does not match, display the message
“SORRY, NO SALARY REVISIONS FOR EMPLOYEES IN THIS
DEPARTMENT.” If the value matches, then, open the cursor emp_records.

d. Start a simple loop and fetch the values into emp_sal, emp_fname, and
emp_lname. Use %NOTFOUND for the exit condition.

e. Include a CASE expression. Use the following table as reference for the
conditions in the WHEN clause of the CASE expression.
Note: In your CASE expression use the constants such as c_range1, c_hike1
which are already declared.

For example, if the salary of the employee is less than 6500, then increase the
salary by 20 percent. In every WHEN clause, concatenate the first_name and
last_name of the employee and store it in the INDEX BY table. Increment the
value in variable i so that you can store the string in the next location. Include an
UPDATE statement with the WHERE CURRENT OF clause.

f. Close the loop. Use the %ROWCOUNT attribute and print the number of records
that were modified. Close the cursor.

g. Include a simple loop to print the names of all the employees whose salaries were
revised.
Note: You already have the names of these employees in the INDEX BY table.
Look for the comment “CLOSE THE INNER BLOCK” and include an END IF
statement and an END statement.

f. Save your script as lab_07_04_soln.sql.

3>12000

8> 9500 <12000

15> 6500 < 9500

20< 6500

Hike percentagesalary

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Handling Exceptions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Define PL/SQL exceptions
• Recognize unhandled exceptions
• List and use different types of PL/SQL exception

handlers
• Trap unanticipated errors
• Describe the effect of exception propagation in

nested blocks
• Customize PL/SQL exception messages

Lesson Aim
You have learned to write PL/SQL blocks with a declarative section and an executable
section. All the SQL and PL/SQL code that must be executed is written in the executable
block.
So far we have assumed that the code works satisfactorily if we take care of compile-time
errors. However, the code may cause some unanticipated errors at run time. In this lesson,
you learn how to deal with such errors in the PL/SQL block.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-3

Copyright © 2006, Oracle. All rights reserved.

Example of an Exception

SET SERVEROUTPUT ON

DECLARE

lname VARCHAR2(15);

BEGIN

SELECT last_name INTO lname FROM employees WHERE

first_name='John';

DBMS_OUTPUT.PUT_LINE ('John''s last name is : '
||lname);

END;

/

Example of an Exception
Consider the example shown in the slide. There are no syntax errors in the code, which
means you must be able to successfully execute the anonymous block. The select statement
in the block retrieves the last_name of John. You see the following output when you
execute the code:

The code does not work as expected. You expected the SELECT statement to retrieve only
one row; however, it retrieves multiple rows. Such errors that occur at run time are called
exceptions. When an exception occurs, the PL/SQL block is terminated. You can handle
such exceptions in your PL/SQL block.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-4

Copyright © 2006, Oracle. All rights reserved.

Example of an Exception

SET SERVEROUTPUT ON

DECLARE

lname VARCHAR2(15);

BEGIN

SELECT last_name INTO lname FROM employees WHERE

first_name='John';

DBMS_OUTPUT.PUT_LINE ('John''s last name is : '
||lname);

EXCEPTION

WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE (' Your select statement
retrieved multiple rows. Consider using a
cursor.');

END;

/

Example of an Exception (continued)
You have written PL/SQL blocks with a declarative section (beginning with the keyword
DECLARE) and an executable section (beginning and ending with the keywords BEGIN and
END respectively). For exception handling, you include another optional section called the
exception section. This section begins with the keyword EXCEPTION. If present, this is the
last section in a PL/SQL block. Examine the EXCEPTION section of the code in the slide.
You need not pay attention to the syntax and statements; you learn about them later in the
lesson.
The code in the previous slide is rewritten to handle the exception that occurred. The output
of the code is:

Unlike earlier, the PL/SQL program does not terminate abruptly. When the exception is
raised, the control shifts to the exception section and all the statements in the exception
section are executed. The PL/SQL block terminates with normal, successful completion.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-5

Copyright © 2006, Oracle. All rights reserved.

Handling Exceptions with PL/SQL

• An exception is a PL/SQL error that is raised
during program execution.

• An exception can be raised:
– Implicitly by the Oracle server
– Explicitly by the program

• An exception can be handled:
– By trapping it with a handler
– By propagating it to the calling environment

Handling Exceptions with PL/SQL
An exception is an error in PL/SQL that is raised during the execution of a block. A block
always terminates when PL/SQL raises an exception, but you can specify an exception
handler to perform final actions before the block ends.
Two Methods for Raising an Exception

• An Oracle error occurs and the associated exception is raised automatically. For
example, if the error ORA-01403 occurs when no rows are retrieved from the
database in a SELECT statement, PL/SQL raises the exception NO_DATA_FOUND.
These errors are converted into predefined exceptions.

• Depending on the business functionality your program implements, you may have to
explicitly raise an exception. You raise an exception explicitly by issuing the RAISE
statement in the block. The raised exception may be either user-defined or predefined.
There are also some non-predefined Oracle errors. These errors are any standard
Oracle errors that are not predefined. You can explicitly declare exceptions and
associate them with the non-predefined Oracle errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-6

Copyright © 2006, Oracle. All rights reserved.

Handling Exceptions

Exception
is raised.

Is the
exception
trapped?

Yes

Execute statements
in the EXCEPTION

section.

Terminate
gracefully.

No
Terminate
abruptly.

Propagate the
exception.

Handling Exceptions
Trapping an Exception
Include an EXCEPTION section in your PL/SQL program to trap exceptions. If the
exception is raised in the executable section of the block, processing then branches to the
corresponding exception handler in the exception section of the block. If PL/SQL
successfully handles the exception, the exception does not propagate to the enclosing block
or to the calling environment. The PL/SQL block terminates successfully.
Propagating an Exception
If the exception is raised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated
to an enclosing block or to the calling environment. The calling environment can be any
application (such as SQL*Plus that invokes the PL/SQL program).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-7

Copyright © 2006, Oracle. All rights reserved.

Exception Types

• Predefined Oracle server
• Non-predefined Oracle server

• User-defined

} Implicitly raised

Explicitly raised

Exception Types
There are three types of exceptions.

Note: Some application tools with client-side PL/SQL (such as Oracle Developer Forms)
have their own exceptions.

Exception Description Directions for Handling
Predefined Oracle
Server error

One of approximately 20
errors that occur most
often in PL/SQL code

You need not declare these
exceptions. They are predefined by
the Oracle server and are raised
implicitly.

Non-predefined
Oracle Server error

Any other standard
Oracle Server error

Declare within the declarative
section and enable the Oracle server
to raise them implicitly.

User-defined error A condition that the
developer determines is
abnormal

Declare in the declarative section
and raise explicitly.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-8

Copyright © 2006, Oracle. All rights reserved.

Trapping Exceptions

Syntax:

EXCEPTION

WHEN exception1 [OR exception2 . . .] THEN
statement1;
statement2;
. . .

[WHEN exception3 [OR exception4 . . .] THEN
statement1;
statement2;
. . .]

[WHEN OTHERS THEN
statement1;
statement2;
. . .]

Trapping Exceptions
You can trap any error by including a corresponding handler within the exception handling
section of the PL/SQL block. Each handler consists of a WHEN clause, which specifies an
exception name, followed by a sequence of statements to be executed when that exception is
raised. You can include any number of handlers within an EXCEPTION section to handle
specific exceptions. However, you cannot have multiple handlers for a single exception.
In the syntax:

exception Is the standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section

statement Is one or more PL/SQL or SQL statements

OTHERS Is an optional exception-handling clause that traps any exceptions
that have not been explicitly handled

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-9

Trapping Exceptions (continued)
WHEN OTHERS Exception Handler
The exception-handling section traps only those exceptions that are specified; any other
exceptions are not trapped unless you use the OTHERS exception handler. This traps any
exception not yet handled. For this reason, OTHERS may be used, and if used it must be the
last exception handler that is defined.

WHEN NO_DATA_FOUND THEN
statement1;
...
WHEN TOO_MANY_ROWS THEN
statement1;
...
WHEN OTHERS THEN
statement1;

Consider the preceding example. If the exception NO_DATA_FOUND is raised by the
program, the statements in the corresponding handler are executed. If the exception
TOO_MANY_ROWS is raised, the statements in the corresponding handler are executed.
However, if some other exception is raised, the statements in the OTHERS exception handler
are executed.
The OTHERS handler traps all the exceptions that are not already trapped. Some Oracle
tools have their own predefined exceptions that you can raise to cause events in the
application. The OTHERS handler also traps these exceptions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-10

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Trapping Exceptions

• The EXCEPTION keyword starts the exception
handling section.

• Several exception handlers are allowed.
• Only one handler is processed before leaving the

block.
• WHEN OTHERS is the last clause.

Guidelines for Trapping Exceptions
• Begin the exception-handling section of the block with the EXCEPTION keyword.
• Define several exception handlers, each with its own set of actions, for the block.
• When an exception occurs, PL/SQL processes only one handler before leaving the

block.
• Place the OTHERS clause after all other exception-handling clauses.
• You can have only one OTHERS clause.
• Exceptions cannot appear in assignment statements or SQL statements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-11

Copyright © 2006, Oracle. All rights reserved.

Trapping Predefined Oracle Server Errors

• Reference the predefined name in the exception-
handling routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Trapping Predefined Oracle Server Errors
Trap a predefined Oracle server error by referencing its predefined name within the
corresponding exception-handling routine.
For a complete list of predefined exceptions, see the PL/SQL User’s Guide and Reference.
Note: PL/SQL declares predefined exceptions in the STANDARD package. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-12

Predefined Exceptions

Exception Name Oracle
Server
Error
Number

Description

ACCESS_INTO_NULL ORA-
06530

Attempted to assign values to the
attributes of an uninitialized object

CASE_NOT_FOUND ORA-
06592

None of the choices in the WHEN clauses
of a CASE statement are selected, and
there is no ELSE clause.

COLLECTION_IS_NULL ORA-
06531

Attempted to apply collection methods
other than EXISTS to an uninitialized
nested table or VARRAY

CURSOR_ALREADY_OPEN ORA-
06511

Attempted to open an already-open cursor

DUP_VAL_ON_INDEX ORA-
00001

Attempted to insert a duplicate value

INVALID_CURSOR ORA-
01001

Illegal cursor operation occurred.

INVALID_NUMBER ORA-
01722

Conversion of character string to number
fails.

LOGIN_DENIED ORA-
01017

Logging on to the Oracle server with an
invalid username or password

NO_DATA_FOUND ORA-
01403

Single row SELECT returned no data.

NOT_LOGGED_ON ORA-
01012

PL/SQL program issues a database call
without being connected to the Oracle
server.

PROGRAM_ERROR ORA-
06501

PL/SQL has an internal problem.

ROWTYPE_MISMATCH ORA-
06504

Host cursor variable and PL/SQL cursor
variable involved in an assignment have
incompatible return types.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-13

Predefined Exceptions (continued)

Exception Name Oracle
Server
Error
Number

Description

STORAGE_ERROR ORA-
06500

PL/SQL ran out of memory, or memory is
corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-
06533

Referenced a nested table or VARRAY element
by using an index number larger than the
number of elements in the collection

SUBSCRIPT_OUTSIDE_LIMIT ORA-
06532

Referenced a nested table or VARRAY element
by using an index number that is outside the
legal range (for example, –1)

SYS_INVALID_ROWID ORA-
01410

The conversion of a character string into a
universal ROWID fails because the character
string does not represent a valid ROWID.

TIMEOUT_ON_RESOURCE ORA-
00051

Time-out occurred while the Oracle server was
waiting for a resource.

TOO_MANY_ROWS ORA-
01422

Single-row SELECT returned more than one
row.

VALUE_ERROR ORA-
06502

Arithmetic, conversion, truncation, or size-
constraint error occurred.

ZERO_DIVIDE ORA-
01476

Attempted to divide by zero

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-14

Copyright © 2006, Oracle. All rights reserved.

Trapping Non-Predefined
Oracle Server Errors

Declarative section

Declare

Name the
exception.

Use PRAGMA
EXCEPTION_INIT.

EXCEPTION section

Handle the raised
exception.

Associate Reference

Trapping Non-Predefined Oracle Server Errors
Non-predefined exceptions are similar to predefined exceptions; however, they are not
defined as PL/SQL exceptions in the Oracle server. They are standard Oracle errors. You
create exceptions with standard Oracle errors by using the PRAGMA EXCEPTION_INIT
function. Such exceptions are called non-predefined exceptions.
You can trap a non-predefined Oracle server error by declaring it first. The declared
exception is raised implicitly. In PL/SQL, PRAGMA EXCEPTION_INIT tells the compiler
to associate an exception name with an Oracle error number. That enables you to refer to
any internal exception by name and to write a specific handler for it.
Note: PRAGMA (also called pseudoinstructions) is the keyword that signifies that the
statement is a compiler directive, which is not processed when the PL/SQL block is
executed. Rather, it directs the PL/SQL compiler to interpret all occurrences of the
exception name within the block as the associated Oracle server error number.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-15

Copyright © 2006, Oracle. All rights reserved.

SET SERVEROUTPUT ON

DECLARE

insert_excep EXCEPTION;

PRAGMA EXCEPTION_INIT
(insert_excep, -01400);

BEGIN

INSERT INTO departments
(department_id, department_name) VALUES (280, NULL);

EXCEPTION

WHEN insert_excep THEN

DBMS_OUTPUT.PUT_LINE('INSERT OPERATION FAILED');

DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

Non-Predefined Error

To trap Oracle server error number –01400
(“cannot insert NULL”):

1
2

3

Non-Predefined Error
1. Declare the name of the exception in the declarative section.

Syntax:
exception EXCEPTION;
In the syntax, exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number using
the PRAGMA EXCEPTION_INIT function.
Syntax:
PRAGMA EXCEPTION_INIT(exception, error_number);

In the syntax, exception is the previously declared exception and error_number is a
standard Oracle server error number.

3. Reference the declared exception within the corresponding exception-handling routine.
Example
The example in the slide tries to insert the value NULL for the department_name
column of the departments table. However, the operation is not successful because
department_name is a NOT NULL column. Note the following line in the example:

DBMS_OUTPUT.PUT_LINE(SQLERRM);

The SQLERRM function is used to retrieve the error message. You learn more about
SQLERRM in the next few slides.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-16

Copyright © 2006, Oracle. All rights reserved.

Functions for Trapping Exceptions

• SQLCODE: Returns the numeric value for the error
code

• SQLERRM: Returns the message associated with
the error number

Functions for Trapping Exceptions
When an exception occurs, you can identify the associated error code or error message by
using two functions. Based on the values of the code or the message, you can decide which
subsequent actions to take.
SQLCODE returns the Oracle error number for internal exceptions. SQLERRM returns the
message associated with the error number.

SQLCODE Values: Examples

Function Description

SQLCODE Returns the numeric value for the error code (You can assign it to a
NUMBER variable.)

SQLERRM Returns character data containing the message associated with the error
number

SQLCODE Value Description
0 No exception encountered
1 User-defined exception
+100 NO_DATA_FOUND exception
negative number Another Oracle server error number

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-17

Copyright © 2006, Oracle. All rights reserved.

Functions for Trapping Exceptions

Example
DECLARE

error_code NUMBER;
error_message VARCHAR2(255);

BEGIN
...
EXCEPTION
...

WHEN OTHERS THEN
ROLLBACK;
error_code := SQLCODE ;
error_message := SQLERRM ;

INSERT INTO errors (e_user, e_date, error_code,

error_message) VALUES(USER,SYSDATE,error_code,

error_message);
END;
/

Functions for Trapping Exceptions (continued)
When an exception is trapped in the WHEN OTHERS exception handler, you can use a set of
generic functions to identify those errors. The example in the slide illustrates the values of
SQLCODE and SQLERRM assigned to variables, and then those variables being used in a
SQL statement.
You cannot use SQLCODE or SQLERRM directly in a SQL statement. Instead, you must
assign their values to local variables and then use the variables in the SQL statement, as
shown in the following example:

DECLARE
err_num NUMBER;
err_msg VARCHAR2(100);

BEGIN
...

EXCEPTION
...
WHEN OTHERS THEN

err_num := SQLCODE;
err_msg := SUBSTR(SQLERRM, 1, 100);
INSERT INTO errors VALUES (err_num, err_msg);

END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-18

Copyright © 2006, Oracle. All rights reserved.

Trapping User-Defined Exceptions

Declarative
section

Name the
exception.

Executable
section

Explicitly raise
the exception by
using the RAISE

statement.

Exception-handling
section

Handle the raised
exception.

Raise ReferenceDeclare

Trapping User-Defined Exceptions
PL/SQL enables you to define your own exceptions depending on the requirements of your
application. For example, you may prompt the user to enter a department number.
Define an exception to deal with error conditions in the input data. Check whether the
department number exists. If it does not, then you may have to raise the user-defined
exception.
PL/SQL exceptions must be:

• Declared in the declarative section of a PL/SQL block
• Raised explicitly with RAISE statements
• Handled in the EXCEPTION section

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-19

Copyright © 2006, Oracle. All rights reserved.

Trapping User-Defined Exceptions

...

ACCEPT deptno PROMPT 'Please enter the department number:'
ACCEPT name PROMPT 'Please enter the department name:'
DECLARE

invalid_department EXCEPTION;
name VARCHAR2(20):='&name';
deptno NUMBER :=&deptno;

BEGIN
UPDATE departments
SET department_name = name
WHERE department_id = deptno;
IF SQL%NOTFOUND THEN
RAISE invalid_department;

END IF;
COMMIT;

EXCEPTION
WHEN invalid_department THEN
DBMS_OUTPUT.PUT_LINE('No such department id.');

END;
/

1

2

3

Trapping User-Defined Exceptions (continued)
You trap a user-defined exception by declaring it and raising it explicitly.

1. Declare the name of the user-defined exception within the declarative section.
Syntax:
exception EXCEPTION;

In the syntax, exception is the name of the exception.
2. Use the RAISE statement to raise the exception explicitly within the executable

section.
Syntax:
RAISE exception;

In the syntax, exception is the previously declared exception.
3. Reference the declared exception within the corresponding exception-handling routine.

Example
This block updates the department_name of a department. The user supplies the
department number and the new name. If the user enters a department number that does not
exist, no rows are updated in the departments table. Raise an exception and print a
message for the user that an invalid department number was entered.
Note: Use the RAISE statement by itself within an exception handler to raise the same
exception again and propagate it back to the calling environment.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-20

Copyright © 2006, Oracle. All rights reserved.

Calling Environments

Traps exception in exception-handling
routine of enclosing block

An enclosing
PL/SQL block

Accesses exception number through the
SQLCA data structure

Precompiler
application

Accesses error number and message in an
ON-ERROR trigger by means of the
ERROR_CODE and ERROR_TEXT packaged
functions

Oracle Developer
Forms

Displays error number and message to
screen

Procedure Builder

Displays error number and message to
screen

iSQL*Plus

Calling Environments
Instead of trapping an exception within the PL/SQL block, propagate the exception to allow
the calling environment to handle it. Each calling environment has its own way of displaying
and accessing errors.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-21

Copyright © 2006, Oracle. All rights reserved.

Propagating Exceptions in a Subblock

DECLARE
. . .
no_rows exception;
integrity exception;
PRAGMA EXCEPTION_INIT (integrity, -2292);

BEGIN
FOR c_record IN emp_cursor LOOP
BEGIN
SELECT ...
UPDATE ...
IF SQL%NOTFOUND THEN
RAISE no_rows;

END IF;
END;

END LOOP;
EXCEPTION
WHEN integrity THEN ...
WHEN no_rows THEN ...

END;
/

Subblocks can handle
an exception or pass
the exception to the
enclosing block.

Propagating Exceptions in a Subblock
When a subblock handles an exception, it terminates normally. Control resumes in the
enclosing block immediately after the subblock’s END statement.
However, if a PL/SQL raises an exception and the current block does not have a handler for
that exception, the exception propagates to successive enclosing blocks until it finds a
handler. If none of these blocks handle the exception, an unhandled exception in the host
environment results.
When the exception propagates to an enclosing block, the remaining executable actions in
that block are bypassed.
One advantage of this behavior is that you can enclose statements that require their own
exclusive error handling in their own block, while leaving more general exception handling
to the enclosing block.
Note in the example that the exceptions, no_rows and integrity, are declared in the
outer block. In the inner block, when the no_rows exception is raised, PL/SQL looks for
the exception to be handled in the subblock. Because the exception is not handled in the
subblock, the exception propagates to the outer block, where PL/SQL finds the handler.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-22

Copyright © 2006, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

Syntax:

• You can use this procedure to issue user-defined
error messages from stored subprograms.

• You can report errors to your application and
avoid returning unhandled exceptions.

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

RAISE_APPLICATION_ERROR Procedure
Use the RAISE_APPLICATION_ERROR procedure to communicate a predefined
exception interactively by returning a nonstandard error code and error message. With
RAISE_APPLICATION_ERROR, you can report errors to your application and avoid
returning unhandled exceptions.
In the syntax:

error_number

Is a user-specified number for the exception between –20000
and –20999

message

Is the user-specified message for the exception; is a character string
up to 2,048 bytes long

TRUE | FALSE

Is an optional Boolean parameter (If TRUE, the error is placed
on the stack of previous errors. If FALSE, which is the default, the
error replaces all previous errors.)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-23

Copyright © 2006, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

• Used in two different places:
– Executable section
– Exception section

• Returns error conditions to the user in a manner
consistent with other Oracle server errors

RAISE_APPLICATION_ERROR Procedure (continued)
The RAISE_APPLICATION_ERROR procedure can be used in either the executable
section or the exception section of a PL/SQL program, or both. The returned error is
consistent with how the Oracle server produces a predefined, non-predefined, or user-
defined error. The error number and message are displayed to the user.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-24

Copyright © 2006, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

Executable section:

Exception section:

BEGIN
...

DELETE FROM employees
WHERE manager_id = v_mgr;

IF SQL%NOTFOUND THEN
RAISE_APPLICATION_ERROR(-20202,

'This is not a valid manager');
END IF;
...

...
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20201,

'Manager is not a valid employee.');
END;
/

RAISE_APPLICATION_ERROR Procedure (continued)
The slide shows that the RAISE_APPLICATION_ERROR procedure can be used in both
the executable and the exception sections of a PL/SQL program.
Here is another example of using the RAISE_APPLICATION_ERROR procedure:

DECLARE
e_name EXCEPTION;
PRAGMA EXCEPTION_INIT (e_name, -20999);

BEGIN
...
DELETE FROM employees
WHERE last_name = 'Higgins';
IF SQL%NOTFOUND THEN
RAISE_APPLICATION_ERROR(-20999,'This is not a
valid last name');
END IF;

EXCEPTION
WHEN e_name THEN
-- handle the error
...

END;

/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-25

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Define PL/SQL exceptions
• Add an EXCEPTION section to the PL/SQL block to

deal with exceptions at run time
• Handle different types of exceptions:

– Predefined exceptions
– Non-predefined exceptions
– User-defined exceptions

• Propagate exceptions in nested blocks and call
applications

Summary
In this lesson, you learned how to deal with different types of exceptions. In PL/SQL, a
warning or error condition at run time is called an exception. Predefined exceptions are error
conditions that are defined by the Oracle server. Non-predefined exceptions can be any
standard Oracle server errors. User-defined exceptions are exceptions specific to your
application. The PRAGMA EXCEPTION_INIT function can be used to associate a declared
exception name with an Oracle server error.
You can define exceptions of your own in the declarative section of any PL/SQL block.
For example, you can define an exception named INSUFFICIENT_FUNDS to flag
overdrawn bank accounts.
When an error occurs, an exception is raised. Normal execution stops and transfers control
to the exception-handling section of your PL/SQL block. Internal exceptions are raised
implicitly (automatically) by the run-time system; however, user-defined exceptions must be
raised explicitly. To handle raised exceptions, you write separate routines called exception
handlers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-26

Copyright © 2006, Oracle. All rights reserved.

Practice 8: Overview

This practice covers the following topics:
• Handling named exceptions
• Creating and invoking user-defined exceptions

Practice 8: Overview
In this practice, you create exception handlers for specific situations.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-27

Practice 8

1. The purpose of this example is to show the usage of predefined exceptions. Write a
PL/SQL block to select the name of the employee with a given salary value.

a. Delete all records in the messages table. Use the DEFINE command to define
a variable sal and initialize it to 6000.

b. In the declarative section declare two variables: ename of type
employees.last_name and emp_sal of type employees.salary.
Pass the value of the substitution variables to emp_sal.

c. In the executable section, retrieve the last names of employees whose salaries are
equal to the value in emp_sal.
Note: Do not use explicit cursors.
If the salary entered returns only one row, insert into the messages table the
employee’s name and the salary amount.

d. If the salary entered does not return any rows, handle the exception with an
appropriate exception handler and insert into the messages table the message
“No employee with a salary of <salary>.”

e. If the salary entered returns more than one row, handle the exception with an
appropriate exception handler and insert into the messages table the message
“More than one employee with a salary of <salary>.”

f. Handle any other exception with an appropriate exception handler and insert into
the messages table the message “Some other error occurred.”

g. Display the rows from the messages table to check whether the PL/SQL block
has executed successfully. Sample output is shown below.

2. The purpose of this example is to show how to declare exceptions with a standard
Oracle server error. Use the Oracle server error ORA-02292 (integrity constraint
violated – child record found).

a. In the declarative section, declare an exception childrecord_exists.
Associate the declared exception with the standard Oracle server error –02292.

b. In the executable section, display ‘Deleting department 40.....’. Include a
DELETE statement to delete the department with department_id 40.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 8-28

Practice 8 (continued)
c. Include an exception section to handle the childrecord_exists exception

and display the appropriate message. Sample output is shown below.

3. Load the script lab_07_04_soln.sql.
a. Observe the declarative section of the outer block. Note that the

no_such_employee exception is declared.
b. Look for the comment “RAISE EXCEPTION HERE.” If the value of emp_id is

not between 100 and 206, then raise the no_such_employee exception.
c. Look for the comment “INCLUDE EXCEPTION SECTION FOR OUTER

BLOCK” and handle the exceptions no_such_employee and
too_many_rows. Display appropriate messages when the exceptions occur.
The employees table has only one employee working in the HR department
and therefore the code is written accordingly. The too_many_rows exception
is handled to indicate that the select statement retrieves more than one employee
working in the HR department.

d. Close the outer block.
e. Save your script as lab_08_03_soln.sql.
f. Execute the script. Enter the employee number and the department number and

observe the output. Enter different values and check for different conditions.
The sample output for employee ID 203 and department ID 100 is shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Creating Stored Procedures and Functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Differentiate between anonymous blocks and

subprograms
• Create a simple procedure and invoke it from an

anonymous block
• Create a simple function
• Create a simple function that accepts a parameter
• Differentiate between procedures and functions

Lesson Aim
You have learned about anonymous blocks. This lesson introduces you to named blocks,
which are also called subprograms. Procedures and functions are PL/SQL subprograms.
In the lesson, you learn to differentiate between anonymous blocks and subprograms.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-3

Copyright © 2006, Oracle. All rights reserved.

Procedures and Functions

• Are named PL/SQL blocks
• Are called PL/SQL subprograms
• Have block structures similar to anonymous

blocks:
– Optional declarative section (without DECLARE

keyword)
– Mandatory executable section
– Optional section to handle exceptions

Procedures and Functions
Until this point, anonymous blocks are the only examples of PL/SQL code covered in this
course. As the name indicates, anonymous blocks are unnamed executable PL/SQL blocks.
Because they are unnamed, they can be neither reused nor stored for later use.
Procedures and functions are named PL/SQL blocks. They are also known as subprograms.
These subprograms are compiled and stored in the database. The block structure of the
subprograms is similar to the structure of anonymous blocks. Subprograms can be declared
not only at the schema level but also within any other PL/SQL block. A subprogram
contains the following sections:
Declarative section: Subprograms can have an optional declarative section. However,
unlike anonymous blocks, the declarative section of a subprogram does not start with the
keyword DECLARE. The optional declarative section follows the keyword IS or AS in the
subprogram declaration.
Executable section: This is the mandatory section of the subprogram, which contains the
implementation of the business logic. Looking at the code in this section, you can easily
determine the business functionality of the subprogram. This section begins and ends with
the keywords BEGIN and END, respectively.
Exception section: This is an optional section that is included to handle exceptions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-4

Copyright © 2006, Oracle. All rights reserved.

Differences Between Anonymous Blocks
and Subprograms

Can take parametersCannot take parameters

Subprograms called functions
must return values.

Do not return values

Named and therefore can be
invoked by other applications

Cannot be invoked by
other applications

Stored in the databaseNot stored in the database

Compiled only onceCompiled every time

Named PL/SQL blocksUnnamed PL/SQL blocks

SubprogramsAnonymous Blocks

Differences Between Anonymous Blocks and Subprograms
The table in the slide not only shows the differences between anonymous blocks and
subprograms, but also highlights the general benefits of subprograms.
Anonymous blocks are not persistent database objects. They are compiled and executed
only once. They are not stored in the database for reuse. If you want to reuse, you must rerun
the script that creates the anonymous block, which causes recompilation and execution.
Procedures and functions are compiled and stored in the database in a compiled form.
They are recompiled only when they are modified. Because they are stored in the database,
any application can make use of these subprograms based on appropriate permissions. The
calling application can pass parameters to the procedures if the procedure is designed to
accept parameters. Similarly, a calling application can retrieve a value if it invokes a
function or a procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-5

Copyright © 2006, Oracle. All rights reserved.

Procedure: Syntax

CREATE [OR REPLACE] PROCEDURE procedure_name
[(argument1 [mode1] datatype1,
argument2 [mode2] datatype2,
. . .)]

IS|AS
procedure_body;

Procedure: Syntax
The slide shows the syntax for creating procedures. In the syntax:

The argument list is optional in a procedure declaration. You learn about procedures in
detail in the course titled Oracle Database 10g: Develop PL/SQL Program Units.

procedure_name Is the name of the procedure to be created

argument

Is the name given to the procedure parameter. Every argument is
associated with a mode and data type. You can have any number of
arguments separated by commas.

mode Mode of argument:
IN (default)
OUT
IN OUT

datatype Is the data type of the associated parameter. The data type of
parameters cannot have explicit size; instead, use %TYPE.

Procedure_body Is the PL/SQL block that makes up the code

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-6

Copyright © 2006, Oracle. All rights reserved.

Procedure: Example

...

CREATE TABLE dept AS SELECT * FROM departments;

CREATE PROCEDURE add_dept IS

dept_id dept.department_id%TYPE;

dept_name dept.department_name%TYPE;

BEGIN

dept_id:=280;

dept_name:='ST-Curriculum';

INSERT INTO dept(department_id,department_name)

VALUES(dept_id,dept_name);

DBMS_OUTPUT.PUT_LINE(' Inserted '||

SQL%ROWCOUNT ||' row ');

END;

/

Procedure: Example
Examine the code in the slide. The add_dept procedure inserts a new department with
department ID 280 and department name ST-Curriculum. The procedure declares two
variables, dept_id and dept_name, in the declarative section. The declarative section of
a procedure starts immediately after the procedure declaration and does not begin with the
keyword DECLARE. The procedure uses the implicit cursor attribute or the
SQL%ROWCOUNT SQL attribute to verify whether the row was successfully inserted.
SQL%ROWCOUNT should return 1 in this case.
Note: When you create any object (such as a table, procedure, function, and so on), the
entries are made to the user_objects table. When the code in the slide is executed
successfully, you can check the user_objects table by issuing the following command:

SELECT object_name,object_type FROM user_objects;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-7

Procedure: Example (continued)
The source of the procedure is stored in the user_source table. You can check the source
for the procedure by issuing the following command:

SELECT * FROM user_source WHERE name='ADD_DEPT';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-8

Copyright © 2006, Oracle. All rights reserved.

Invoking the Procedure

BEGIN
add_dept;

END;
/
SELECT department_id, department_name FROM
dept WHERE department_id=280;

Invoking the Procedure
The slide shows how to invoke a procedure from an anonymous block. You have to include
the call to the procedure in the executable section of the anonymous block. Similarly, you
can invoke the procedure from any application, such as a forms application, Java application
and so on. The select statement in the code checks to see if the row was successfully
inserted.
You can also invoke a procedure with the SQL statement CALL <procedure_name>.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-9

Copyright © 2006, Oracle. All rights reserved.

Function: Syntax

CREATE [OR REPLACE] FUNCTION function_name
[(argument1 [mode1] datatype1,
argument2 [mode2] datatype2,
. . .)]

RETURN datatype
IS|AS
function_body;

Function: Syntax
The slide shows the syntax for creating a function. In the syntax:

The argument list is optional in function declaration. The difference between a procedure
and a function is that a function must return a value to the calling program. Therefore, the
syntax contains return_type, which specifies the data type of the value that the function
returns. A procedure may return a value via an OUT or IN OUT parameter.

function_name Is the name of the function to be created

argument

Is the name given to the function parameter (Every argument is
associated with a mode and data type. You can have any number
or arguments separated by a comma. You pass the argument when
you invoke the function.)

mode Is the type of parameter (Only IN parameters should be declared.)

datatype Is the data type of the associated parameter

RETURN datatype Is the data type of the value returned by the function

function_body Is the PL/SQL block that makes up the function code

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-10

Copyright © 2006, Oracle. All rights reserved.

Function: Example
CREATE FUNCTION check_sal RETURN Boolean IS
dept_id employees.department_id%TYPE;
empno employees.employee_id%TYPE;
sal employees.salary%TYPE;
avg_sal employees.salary%TYPE;

BEGIN
empno:=205;
SELECT salary,department_id INTO sal,dept_id
FROM employees WHERE employee_id= empno;
SELECT avg(salary) INTO avg_sal FROM employees
WHERE department_id=dept_id;
IF sal > avg_sal THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN NULL;

END;
/

Function: Example
The check_sal function is written to determine whether the salary of a particular
employee is greater than or less than the average salary of all employees working in the
same department. The function returns TRUE if the salary of the employee is greater than the
average salary of employees in the department; if not, it returns FALSE. The function
returns NULL if a NO_DATA_FOUND exception is thrown.
Note that the function checks for the employee with the employee ID 205. The function is
hard-coded to check for this employee ID only. If you want to check for any other
employees, you must modify the function itself. You can solve this problem by declaring the
function so that it accepts an argument. You can then pass the employee ID as parameter.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-11

Copyright © 2006, Oracle. All rights reserved.

Invoking the Function

SET SERVEROUTPUT ON

BEGIN

IF (check_sal IS NULL) THEN

DBMS_OUTPUT.PUT_LINE('The function returned

NULL due to exception');

ELSIF (check_sal) THEN

DBMS_OUTPUT.PUT_LINE('Salary > average');

ELSE

DBMS_OUTPUT.PUT_LINE('Salary < average');

END IF;

END;

/

Invoking the Function
You include the call to the function in the executable section of the anonymous block.
The function is invoked as a part of a statement. Remember that the check_sal function
returns Boolean or NULL. Thus the call to the function is included as the conditional
expression for the IF block.
Note: You can use the DESCRIBE command to check the arguments and return type of the
function, as in the following example:

DESCRIBE check_sal;
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-12

Copyright © 2006, Oracle. All rights reserved.

Passing a Parameter to the Function

DROP FUNCTION check_sal;

CREATE FUNCTION check_sal(empno employees.employee_id%TYPE)

RETURN Boolean IS

dept_id employees.department_id%TYPE;

sal employees.salary%TYPE;

avg_sal employees.salary%TYPE;

BEGIN

SELECT salary,department_id INTO sal,dept_id

FROM employees WHERE employee_id=empno;

SELECT avg(salary) INTO avg_sal FROM employees

WHERE department_id=dept_id;

IF sal > avg_sal THEN

RETURN TRUE;

ELSE

RETURN FALSE;

END IF;

EXCEPTION ...

...

Passing a Parameter to the Function
Remember that the function was hard-coded to check the salary of the employee with the
employee ID 205. The code shown in the slide removes that constraint because it is re-
written to accept the employee number as a parameter. You can now pass different
employee numbers and check for the employee’s salary.
You learn more about functions in the course titled Oracle Database 10g: Develop PL/SQL
Program Units.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-13

Copyright © 2006, Oracle. All rights reserved.

Invoking the Function with a Parameter
BEGIN

DBMS_OUTPUT.PUT_LINE('Checking for employee with id 205');

IF (check_sal(205) IS NULL) THEN

DBMS_OUTPUT.PUT_LINE('The function returned

NULL due to exception');

ELSIF (check_sal(205)) THEN

DBMS_OUTPUT.PUT_LINE('Salary > average');

ELSE

DBMS_OUTPUT.PUT_LINE('Salary < average');

END IF;

DBMS_OUTPUT.PUT_LINE('Checking for employee with id 70');

IF (check_sal(70) IS NULL) THEN

DBMS_OUTPUT.PUT_LINE('The function returned

NULL due to exception');

ELSIF (check_sal(70)) THEN

...

END IF;

END;

/

PUT THE SCREENSHOT OF OUTPUT HERE

Invoking the Function with a Parameter
The code in the slide invokes the function twice by passing parameters. The output of the
code is as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-14

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create a simple procedure
• Invoke the procedure from an anonymous block
• Create a simple function
• Create a simple function that accepts parameters
• Invoke the function from an anonymous block

Summary
You can use anonymous blocks to design any functionality in PL/SQL. However, the major
constraint with anonymous blocks is that they are not stored and therefore cannot be reused.
Instead of creating anonymous blocks, you can create PL/SQL subprograms. Procedures and
functions are called subprograms, which are named PL/SQL blocks. Subprograms express
reusable logic by virtue of parameterization. The structure of a procedure or a function is
similar to the structure of an anonymous block. These subprograms are stored in the
database and are therefore reusable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-15

Copyright © 2006, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:
• Converting an existing anonymous block to a

procedure
• Modifying the procedure to accept a parameter
• Writing an anonymous block to invoke the

procedure

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals 9-16

Practice 9
1. In iSQL*Plus, load the script lab_02_04_soln.sql that you created for question

4 of practice 2.
a. Modify the script to convert the anonymous block to a procedure called greet.
b. Execute the script to create the procedure.
c. Save your script as lab_09_01_soln.sql.
d. Click the Clear button to clear the workspace.
e. Create and execute an anonymous block to invoke the procedure greet. Sample

output is shown below.

2. Load the script lab_09_01_soln.sql.
a. Drop the procedure greet by issuing the following command:

DROP PROCEDURE greet
b. Modify the procedure to accept an argument of type VARCHAR2. Call the

argument name.
c. Print Hello <name> instead of printing Hello World.
d. Save your script as lab_09_02_soln.sql.
e. Execute the script to create the procedure.
f. Create and execute an anonymous block to invoke the procedure greet with a

parameter. Sample output is shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

A
Practice Solutions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-2

Practice 1
Before you begin this practice, ensure that you have seen both the viewlets on iSQL*Plus usage.

The labs folder is the working directory where you can save your scripts. Ask your instructor
for help in locating the labs folder for this course. The solutions for all practices are in the
soln folder.

1. Which of the following PL/SQL blocks execute successfully?

a. BEGIN
END;

b. DECLARE
amount INTEGER(10);
END;

c. DECLARE
BEGIN
END;

d. DECLARE
amount INTEGER(10);
BEGIN
DBMS_OUTPUT.PUT_LINE(amount);
END;

The block in a does not execute because the executable section does not have any statements.
The block in b does not have the mandatory executable section that begins with the BEGIN
keyword.
The block in c has all the necessary parts but the executable section does not have any
statements.

2. Create and execute a simple anonymous block that outputs “Hello World.” Execute and save
this script as lab_01_02_soln.sql.

a. Start iSQL*Plus. Provide login details. The instructor will provide the necessary
information.

b. Type the following code in the workspace.

SET SERVEROUTPUT ON
BEGIN
DBMS_OUTPUT.PUT_LINE(' Hello World ');
END;

c. Click the Execute button.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-3

d. You should see the following output:

e. Click the Save Script button. Select the folder in which you want to save the file.
Enter lab_01_02_soln.sql for the file name and click the Save button.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-4

Practice 2
Note: Use iSQL*Plus for this practice.

1. Identify valid and invalid identifiers:

a. today Valid
b. last_name Valid
c. today’s_date Invalid – character ‘’’ is not allowed
d. Number_of_days_in_February_this_year Invalid – Too long
e. Isleap$year Valid
f. #number Invalid – Cannot start with ‘#’
g. NUMBER# Valid
h. number1to7 Valid

2. Identify valid and invalid variable declaration and initialization:

a. number_of_copies PLS_INTEGER; Valid
b. PRINTER_NAME constant VARCHAR2(10); Invalid
c. deliver_to VARCHAR2(10):=Johnson; Invalid
d. by_when DATE:= SYSDATE+1; Valid

The declaration in b is invalid because constant variables must be initialized during
declaration.
The declaration in c is invalid because string literals should be enclosed within single
quotes.

3. Examine the following anonymous block and choose the appropriate statement.

SET SERVEROUTPUT ON
DECLARE
fname VARCHAR2(20);
lname VARCHAR2(15) DEFAULT 'fernandez';
BEGIN
DBMS_OUTPUT.PUT_LINE(FNAME ||' ' ||lname);
END;

a. The block executes successfully and prints “fernandez.”
b. The block produces an error because the fname variable is used without initializing.
c. The block executes successfully and prints “null fernandez.”
d. The block produces an error because you cannot use the DEFAULT keyword to

initialize a variable of type VARCHAR2.
e. The block produces an error because the fname variable is not declared.

a. The block will execute successfully and print “fernandez.”

4. Create an anonymous block. In iSQL*Plus, load the script lab_01_02_soln.sql, which
you created in exercise 2 of practice 1 by following these instructions:
 Click the Load Script button.
 Browse to select the lab_01_02_soln.sql file. Click the Load button. Your
 workspace will now have the code in the .sql file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-5

a. Add declarative section to this PL/SQL block. In the declarative section, declare the
following variables:
1. Variable today of type DATE. Initialize today with SYSDATE.

DECLARE
today DATE:=SYSDATE;

2. Variable tomorrow of type today. Use %TYPE attribute to declare this
variable.

tomorrow today%TYPE;

b. In the executable section initialize the variable tomorrow with an expression, which
calculates tomorrow’s date (add one to the value in today). Print the value of
today and tomorrow after printing “Hello World.”

BEGIN
tomorrow:=today +1;
DBMS_OUTPUT.PUT_LINE(' Hello World ');
DBMS_OUTPUT.PUT_LINE('TODAY IS : '|| today);
DBMS_OUTPUT.PUT_LINE('TOMORROW IS : ' || tomorrow);
END;

c. Execute and save your script as lab_02_04_soln.sql. Follow the instructions in
step 2 e) of practice 1 to save the file. Sample output is as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-6

5. Edit the lab_02_04_soln.sql script.

a. Add code to create two bind variables.
Create bind variables basic_percent and pf_percent of type NUMBER.

VARIABLE basic_percent NUMBER
VARIABLE pf_percent NUMBER

b. In the executable section of the PL/SQL block assign the values 45 and 12 to
basic_percent and pf_percent respectively.

:basic_percent:=45;
:pf_percent:=12;

c. Terminate the PL/SQL block with “/” and display the value of the bind variables by
using the PRINT command.

/
PRINT basic_percent
PRINT pf_percent

OR

PRINT

d. Execute and Save your script as lab_02_05_soln.sql. Sample output is as
follows:

Click the Next Page button.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-7

Practice 3
Note: Use iSQL*Plus for this practice.

DECLARE
 weight NUMBER(3) := 600;
 message VARCHAR2(255) := 'Product 10012';
BEGIN
 DECLARE
 weight NUMBER(3) := 1;
 message VARCHAR2(255) := 'Product 11001';
 new_locn VARCHAR2(50) := 'Europe';
 BEGIN
 weight := weight + 1;
 new_locn := 'Western ' || new_locn;

 END;
 weight := weight + 1;
 message := message || ' is in stock';
 new_locn := 'Western ' || new_locn;

END;

1. Evaluate the preceding PL/SQL block and determine the data type and value of each of the
following variables according to the rules of scoping.

a. The value of weight at position 1 is:
2
The data type is NUMBER.

b. The value of new_locn at position 1 is:

Western Europe
The data type is VARCHAR2.

c. The value of weight at position 2 is:

601
The data type is NUMBER.

d. The value of message at position 2 is:

Product 10012 is in stock.
The data type is VARCHAR2.

e. The value of new_locn at position 2 is:

Illegal because new_locn is not visible outside the subblock.

1

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-8

DECLARE
 customer VARCHAR2(50) := 'Womansport';
 credit_rating VARCHAR2(50) := 'EXCELLENT';
BEGIN
 DECLARE
 customer NUMBER(7) := 201;
 name VARCHAR2(25) := 'Unisports';
 BEGIN
 credit_rating :=‘GOOD’;
 …
 END;
 …
END;

2. In the preceding PL/SQL block, determine the values and data types for each of the following

cases.

a. The value of customer in the nested block is:
201
The data type is NUMBER.F

b. The value of name in the nested block is:
Unisports
The data type is VARCHAR2.

c. The value of credit_rating in the nested block is:
GOOD
The data type is VARCHAR2.

d. The value of customer in the main block is:
Womansport
The data type is VARCHAR2.

e. The value of name in the main block is:
name is not visible in the main block and you would see an error.

f. The value of credit_rating in the main block is:
GOOD
The data type is VARCHAR2.

3. Use the same session that you used to execute the practices in Lesson 2. If you have opened a
new session, then execute lab_02_05_soln.sql. Edit lab_02_05_soln.sql.

a. Use single line comment syntax to comment the lines that create the bind variables.

-- VARIABLE basic_percent NUMBER
-- VARIABLE pf_percent NUMBER

b. Use multiple line comments in the executable section to comment the lines that assign

values to the bind variables.

/* :basic_percent:=45;
:pf_percent:=12; */

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-9

c. Declare two variables: fname of type VARCHAR2 and size 15, and emp_sal of

type NUMBER and size 10.

fname VARCHAR2(15);
emp_sal NUMBER(10);

d. Include the following SQL statement in the executable section:

SELECT first_name, salary INTO fname, emp_sal
FROM employees WHERE employee_id=110;

e. Change the line that prints “Hello World” to print “Hello” and the first name. You

can comment the lines that display the dates and print the bind variables, if you want
to.

DBMS_OUTPUT.PUT_LINE(' Hello '|| fname);

f. Calculate the contribution of the employee towards provident fund (PF).

PF is 12% of the basic salary, and the basic salary is 45% of the salary. Use the bind
variables for the calculation. Try to use only one expression to calculate the PF. Print
the employee’s salary and his contribution toward PF.

DBMS_OUTPUT.PUT_LINE('YOUR SALARY IS : '||emp_sal);
DBMS_OUTPUT.PUT_LINE('YOUR CONTRIBUTION TOWARDS PF:
'||emp_sal*:basic_percent/100*:pf_percent/100);

g. Execute and save your script as lab_03_03_soln.sql. Sample output is as

follows:

4. Accept a value at run time using the substitution variable. In this practice, you will modify
the script lab_03_04.sql to accept user input.

a. Load the script lab_03_04.sql file.
b. Include the PROMPT command to prompt the user with the following message:

“Please enter your employee number.”

ACCEPT empno PROMPT 'Please enter your employee number: '

c. Modify the declaration of the empno variable to accept the user input.

empno NUMBER(6):=&empno;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-10

d. Modify the select statement to include the substitution variable empno.

SELECT first_name, salary INTO fname, emp_sal
FROM employees WHERE employee_id=empno;

e. Execute and save this script as lab_03_04_soln.sql. Sample output is as

follows:

Enter 100 and click the Continue button.

5. Execute the script lab_03_05.sql. This script creates a table called
employee_details.

a. The employee and employee_details tables have the same data. You will
update the data in the employee_details table. Do not update or change the data
in the employees table.

b. Open the script lab_03_05b.sql and observe the code in the file. Note that the
code accepts the employee number and the department number from the user.

SET SERVEROUTPUT ON
SET VERIFY OFF
ACCEPT emp_id PROMPT 'Please enter your employee number';
ACCEPT emp_deptid PROMPT 'Please enter the department number for which
salary revision is being done';

DECLARE
 emp_authorization NUMBER(5);
 emp_id NUMBER(5):=&emp_id;
 emp_deptid NUMBER(6):=&emp_deptid;
 no_such_employee EXCEPTION;
...

c. You use this as the skeleton script to develop the application, which was discussed in

the lesson titled “Introduction.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-11

Practice 4
Note: Use iSQL*Plus for this practice.

1. Create a PL/SQL block that selects the maximum department ID in the departments table
and stores it in the max_deptno variable. Display the maximum department ID.

a. Declare a variable max_deptno of type NUMBER in the declarative section.

SET SERVEROUTPUT ON
DECLARE
 max_deptno NUMBER;

b. Start the executable section with the keyword BEGIN and include a SELECT
statement to retrieve the maximum department_id from the departments
table.

BEGIN
 SELECT MAX(department_id) INTO max_deptno FROM departments;

c. Display max_deptno and end the executable block.

DBMS_OUTPUT.PUT_LINE('The maximum department_id is : ' || max_deptno);
END;

d. Execute and save your script as lab_04_01_soln.sql. Sample output is as

follows:

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the
departments table.

a. Load the script lab_04_01_soln.sql. Declare two variables:
dept_name of type departments.department_name.
Bind variable dept_id of type NUMBER.
Assign ‘Education’ to dept_name in the declarative section.

VARIABLE dept_id NUMBER
…
dept_name departments.department_name%TYPE:= 'Education';

b. You have already retrieved the current maximum department number from the
departments table. Add 10 to it and assign the result to dept_id.

:dept_id := 10 + max_deptno;
…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-12

c. Include an INSERT statement to insert data into the department_name,
department_id, and location_id columns of the departments table.
Use values in dept_name, dept_id for department_name,
department_id and use NULL for location_id.

…
INSERT INTO departments (department_id, department_name, location_id)
VALUES (:dept_id,dept_name, NULL);

d. Use the SQL attribute SQL%ROWCOUNT to display the number of rows that are

affected.

DBMS_OUTPUT.PUT_LINE (' SQL%ROWCOUNT gives ' || SQL%ROWCOUNT);
…

e. Execute a select statement to check if the new department is inserted. You can

terminate the PL/SQL block with “/” and include the SELECT statement in your
script.

…
/
SELECT * FROM departments WHERE department_id=:dept_id;

f. Execute and save your script as lab_04_02_soln.sql. Sample output is as

follows:

3. In exercise 2, you set location_id to null. Create a PL/SQL block that updates the
location_id to 3000 for the new department. Use the bind variable dept_id to update
the row.
Note: Skip step a if you have not started a new iSQL*Plus session for this practice.

a. If you have started a new iSQL*Plus session, delete the department that you have
added to the departments table and execute the script lab_04_02_soln.sql.

DELETE FROM departments WHERE department_id=280;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-13

b. Start the executable block with the keyword BEGIN. Include the UPDATE statement
to set the location_id to 3000 for the new department. Use the bind variable
dept_id in your UPDATE statement.

BEGIN
 UPDATE departments SET location_id=3000 WHERE
 department_id=:dept_id;

c. End the executable block with the keyword END. Terminate the PL/SQL block with
“/” and include a SELECT statement to display the department that you updated.

END;
/
SELECT * FROM departments WHERE department_id=:dept_id;

d. Include a DELETE statement to delete the department that you added.

DELETE FROM departments WHERE department_id=:dept_id;

e. Execute and save your script as lab_04_03_soln.sql. Sample output is as
follows:

4. Load the script lab_03_05b.sql to the iSQL*Plus workspace.

a. Observe that the code has nested blocks. You will see the declarative section of the
outer block. Look for the comment “INCLUDE EXECUTABLE SECTION OF
OUTER BLOCK HERE” and start an executable section.

BEGIN

b. Include a single SELECT statement, which retrieves the employee_id of the

employee working in the “Human Resources” department. Use the INTO clause to
store the retrieved value in the variable emp_authorization.

SELECT employee_id into emp_authorization FROM
 employee_details WHERE department_id=(SELECT department_id
 FROM departments WHERE department_name='Human Resources');

c. Save your script as lab_04_04_soln.sql.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-14

Practice 5

1. Execute the command in the file lab_05_01.sql to create the messages table. Write a
PL/SQL block to insert numbers into the messages table.

a. Insert the numbers 1 to 10, excluding 6 and 8.
b. Commit before the end of the block.

BEGIN
FOR i in 1..10 LOOP
 IF i = 6 or i = 8 THEN
 null;
 ELSE
 INSERT INTO messages(results)
 VALUES (i);
 END IF;
END LOOP;
COMMIT;
END;
/

c. Execute a SELECT statement to verify that your PL/SQL block worked.

SELECT * FROM messages;

You should see the following output:

2. Execute the script lab_05_02.sql. This script creates an emp table that is a replica of the
employees table. It alters the emp table to add a new column, stars, of VARCHAR2 data
type and size 50. Create a PL/SQL block that inserts an asterisk in the stars column for every
$1000 of the employee’s salary. Save your script as lab_05_02_soln.sql.

a. Use the DEFINE command to define a variable called empno and initialize it to 176.

SET VERIFY OFF
DEFINE empno = 176

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-15

b. Start the declarative section of the block and pass the value of empno to the PL/SQL
block through an iSQL*Plus substitution variable. Declare a variable asterisk of
type emp.stars and initialize it to NULL. Create a variable sal of type
emp.salary.

DECLARE
 empno emp.employee_id%TYPE := TO_NUMBER(&empno);
 asterisk emp.stars%TYPE := NULL;
 sal emp.salary%TYPE;

c. In the executable section, write logic to append an asterisk (*) to the string for every

$1000 of the salary. For example, if the employee earns $8000, the string of asterisks
should contain eight asterisks. If the employee earns $12500, the string of asterisks
should contain 13 asterisks.

BEGIN
 SELECT NVL(ROUND(salary/1000), 0) INTO sal
 FROM emp WHERE employee_id = empno;

 FOR i IN 1..sal
 LOOP
 asterisk := asterisk ||'*';
 END LOOP;

d. Update the stars column for the employee with the string of asterisks. Commit

before the end of the block.

UPDATE emp SET stars = asterisk
 WHERE employee_id = empno;
 COMMIT;
END;

e. Display the row from the emp table to verify whether your PL/SQL block has

executed successfully.

SELECT employee_id,salary, stars
FROM emp WHERE employee_id=&empno;

f. Execute and save your script as lab_05_02_soln.sql. The output is as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-16

3. Load the script lab_04_04_soln.sql, which you created in exercise 4 of Practice 4.

a. Look for the comment “INCLUDE SIMPLE IF STATEMENT HERE” and include a
simple IF statement to check if the values of emp_id and emp_authorization
are the same.

IF (emp_id=emp_authorization) THEN

b. Save your script as lab_05_03_soln.sql.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-17

Practice 6

1. Write a PL/SQL block to print information about a given country.

a. Declare a PL/SQL record based on the structure of the countries table.
b. Use the DEFINE command to define a variable countryid. Assign CA to

countryid. Pass the value to the PL/SQL block through an iSQL*Plus substitution
variable.

SET SERVEROUTPUT ON
SET VERIFY OFF
DEFINE countryid = CA

c. In the declarative section, use the %ROWTYPE attribute and declare the variable

country_record of type countries.

DECLARE
 country_record countries%ROWTYPE;

d. In the executable section, get all the information from the countries table by

using countryid. Display selected information about the country. Sample output is
as follows:

BEGIN
 SELECT *
 INTO country_record
 FROM countries
 WHERE country_id = UPPER('&countryid');

 DBMS_OUTPUT.PUT_LINE ('Country Id: ' || country_record.country_id ||
 ' Country Name: ' || country_record.country_name
 || ' Region: ' || country_record.region_id);

END;

e. You may want to execute and test the PL/SQL block for the countries with the IDs

DE, UK, US.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-18

2. Create a PL/SQL block to retrieve the name of some departments from the departments
table and print each department name on the screen, incorporating an INDEX BY table. Save
the script as lab_06_02_soln.sql.

a. Declare an INDEX BY table dept_table_type of type
departments.department_name. Declare a variable my_dept_table of
type dept_table_type to temporarily store the name of the departments.

SET SERVEROUTPUT ON
DECLARE
 TYPE dept_table_type is table of departments.department_name%TYPE
 INDEX BY PLS_INTEGER;
 my_dept_table dept_table_type;

b. Declare two variables: loop_count and deptno of type NUMBER. Assign 10 to

loop_count and 0 to deptno.

loop_count NUMBER (2):=10;
deptno NUMBER (4):=0;

c. Using a loop, retrieve the name of 10 departments and store the names in the INDEX

BY table. Start with department_id 10. Increase deptno by 10 for every
iteration of the loop. The following table shows the department_id for which you
should retrieve the department_name and store in the INDEX BY table.

DEPARTMENT_ID DEPARTMENT_NAME

10 Administration

20 Marketing

30 Purchasing

40 Human Resources

50 Shipping

60 IT

70 Public Relations

80 Sales

90 Executive

100 Finance

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-19

BEGIN

 FOR i IN 1..loop_count
 LOOP
 deptno:=deptno+10;
 SELECT department_name
 INTO my_dept_table(i)
 FROM departments
 WHERE department_id = deptno;
 END LOOP;

d. Using another loop, retrieve the department names from the INDEX BY table and

display them.

FOR i IN 1..loop_count
 LOOP
 DBMS_OUTPUT.PUT_LINE (my_dept_table(i));
 END LOOP;
END;

e. Execute and save your script as lab_06_02_soln.sql. The output is as follows:

3. Modify the block that you created in exercise 2 to retrieve all information about each
department from the departments table and display the information. Use an INDEX BY
table of records.

a. Load the script lab_06_02_soln.sql.
b. You have declared the INDEX BY table to be of type

departments.department_name. Modify the declaration of the INDEX BY
table, to temporarily store the number, name, and location of all the departments. Use
the %ROWTYPE attribute.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-20

SET SERVEROUTPUT ON
DECLARE
 TYPE dept_table_type is table of departments%ROWTYPE
 INDEX BY PLS_INTEGER;
 my_dept_table dept_table_type;
 loop_count NUMBER (2):=10;
 deptno NUMBER (4):=0;

c. Modify the select statement to retrieve all department information currently in the
departments table and store it in the INDEX BY table.

BEGIN
 FOR i IN 1..loop_count
 LOOP
 deptno := deptno + 10;
 SELECT *
 INTO my_dept_table(i)
 FROM departments
 WHERE department_id = deptno;
 END LOOP;

d. Using another loop, retrieve the department information from the INDEX BY table

and display the information. Sample output is as follows:

FOR i IN 1..loop_count
 LOOP
 DBMS_OUTPUT.PUT_LINE ('Department Number: ' ||
my_dept_table(i).department_id
 || ' Department Name: ' || my_dept_table(i).department_name
 || ' Manager Id: '|| my_dept_table(i).manager_id
 || ' Location Id: ' || my_dept_table(i).location_id);
 END LOOP;
END;

 O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-21

4. Load the script lab_05_03_soln.sql.

a. Look for the comment “DECLARE AN INDEX BY TABLE OF TYPE
VARCHAR2(50). CALL IT ename_table_type” and include the declaration.

TYPE ename_table_type IS TABLE OF
 VARCHAR2(50) INDEX BY PLS_INTEGER;

b. Look for the comment “DECLARE A VARIABLE ename_table OF TYPE

ename_table_type” and include the declaration.

ename_table ename_table_type;

c. Save your script as lab_06_04_soln.sql.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-22

Practice 7

1. Create a PL/SQL block that determines the top n salaries of the employees.

a. Execute the script lab_07_01.sql to create a new table, top_salaries, for
storing the salaries of the employees.

b. Accept a number n from the user where n represents the number of top n earners from
the employees table. For example, to view the top five salaries, enter 5.
Note: Use the DEFINE command to define a variable p_num to provide the value for
n. Pass the value to the PL/SQL block through an iSQL*Plus substitution variable.

DELETE FROM top_salaries;
DEFINE p_num = 5

c. In the declarative section, declare two variables: num of type NUMBER to accept the

substitution variable p_num, sal of type employees.salary. Declare a cursor,
emp_cursor that retrieves the salaries of employees in descending order.
Remember that the salaries should not be duplicated.

DECLARE
 num NUMBER(3) := &p_num;
 sal employees.salary%TYPE;
 CURSOR emp_cursor IS
 SELECT distinct salary
 FROM employees
 ORDER BY salary DESC;

d. In the executable section, open the loop and fetch top n salaries and insert them into

top_salaries table. You can use a simple loop to operate on the data. Also, try
and use %ROWCOUNT and %FOUND attributes for the exit condition.

BEGIN
 OPEN emp_cursor;
 FETCH emp_cursor INTO sal;
 WHILE emp_cursor%ROWCOUNT <= num AND emp_cursor%FOUND LOOP
 INSERT INTO top_salaries (salary)
 VALUES (sal);
 FETCH emp_cursor INTO sal;
 END LOOP;
 CLOSE emp_cursor;
END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-23

e. After inserting into the top_salaries table, display the rows with a SELECT
statement. The output shown represents the five highest salaries in the employees
table.

/
SELECT * FROM top_salaries;

f. Test a variety of special cases, such as n = 0 or where n is greater than the number of

employees in the employees table. Empty the top_salaries table after each
test.

2. Create a PL/SQL block that does the following:

a. Use the DEFINE command to define a variable p_deptno to provide the department
ID.

SET SERVEROUTPUT ON
SET VERIFY OFF
SET ECHO OFF
DEFINE p_deptno = 10

b. In the declarative section, declare a variable deptno of type NUMBER and assign the

value of p_deptno.

DECLARE
deptno NUMBER := &p_deptno;

c. Declare a cursor, emp_cursor that retrieves the last_name, salary, and

manager_id of the employees working in the department specified in deptno.

CURSOR emp_cursor IS
 SELECT last_name, salary,manager_id
 FROM employees
 WHERE department_id = deptno;

d. In the executable section use the cursor FOR loop to operate on the data retrieved. If

the salary of the employee is less than 5000 and if the manager ID is either 101 or
124, display the message <<last_name>> Due for a raise. Otherwise, display the
message <<last_name>> Not due for a raise.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-24

BEGIN
 FOR emp_record IN emp_cursor
 LOOP
 IF emp_record.salary < 5000 AND (emp_record.manager_id=101 OR
emp_record.manager_id=124) THEN
 DBMS_OUTPUT.PUT_LINE (emp_record.last_name || ' Due for a raise');
 ELSE
 DBMS_OUTPUT.PUT_LINE (emp_record.last_name || ' Not Due for a
raise');
 END IF;
 END LOOP;
END;

e. Test the PL/SQL block for the following cases:

3. Write a PL/SQL block, which declares and uses cursors with parameters.
In a loop, use a cursor to retrieve the department number and the department name from the
departments table for a department whose department_id is less than 100. Pass the
department number to another cursor as a parameter to retrieve from the employees table
the details of employee last name, job, hire date, and salary of those employees whose
employee_id is less than 120 and who work in that department.

Department ID Message
10 Whalen Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Weiss Not Due for a raise
Fripp Not Due for a raise
Kaufling Not Due for a raise
Vollman Not Due for a raise
Mourgas Not Due for a raise
. . .
. . .
Rajs Due for a raise

80 Russel Not Due for a raise
Partners Not Due for a raise
Errazuriz Not Due for a raise
Cambrault Not Due for a raise
. . .
. . .

 O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-25

a. In the declarative section declare a cursor dept_cursor to retrieve
department_id, department_name for those departments with
department_id less than 100. Order by department_id.

SET SERVEROUTPUT ON
DECLARE
 CURSOR dept_cursor IS
 SELECT department_id,department_name
 FROM departments
 WHERE department_id < 100
 ORDER BY department_id;

b. Declare another cursor emp_cursor that takes the department number as parameter

and retrieves last_name, job_id, hire_date, and salary of those
employees with employee_id of less than 120 and who work in that department.

CURSOR emp_cursor(v_deptno NUMBER) IS
 SELECT last_name,job_id,hire_date,salary
 FROM employees
 WHERE department_id = v_deptno
 AND employee_id < 120;

c. Declare variables to hold the values retrieved from each cursor. Use the %TYPE

attribute while declaring variables.

current_deptno departments.department_id%TYPE;
current_dname departments.department_name%TYPE;
ename employees.last_name%TYPE;
job employees.job_id%TYPE;
hiredate employees.hire_date%TYPE;
sal employees.salary%TYPE;

d. Open the dept_cursor, use a simple loop and fetch values into the variables

declared. Display the department number and department name.

BEGIN
OPEN dept_cursor;
 LOOP
 FETCH dept_cursor INTO current_deptno,current_dname;
 EXIT WHEN dept_cursor%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE ('Department Number : ' ||
current_deptno || ' Department Name : ' || current_dname);

e. For each department, open the emp_cursor by passing the current department

number as a parameter. Start another loop and fetch the values of emp_cursor into
variables and print all the details retrieved from the employees table.
Note: You may want to print a line after you have displayed the details of each
department. Use appropriate attributes for the exit condition. Also check if a cursor is
already open before opening the cursor.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-26

IF emp_cursor%ISOPEN THEN
 CLOSE emp_cursor;
END IF;
 OPEN emp_cursor (current_deptno);
 LOOP
 FETCH emp_cursor INTO ename,job,hiredate,sal;
 EXIT WHEN emp_cursor%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE (ename || ' ' || job || ' ' || hiredate
|| ' ' || sal);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('--
--------------------------------------');
 CLOSE emp_cursor;

f. Close all the loops and cursors, and end the executable section. Execute the script.

END LOOP;
 CLOSE dept_cursor;
END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-27

The sample output is as follows:

O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-28

4. Load the script lab_06_04_soln.sql.

a. Look for the comment “DECLARE A CURSOR CALLED emp_records TO HOLD
salary, first_name, and last_name of employees” and include the declaration. Create
the cursor such that it retrieves the salary, first_name, and last_name of
employees in the department specified by the user (substitution variable
emp_deptid). Use the FOR UPDATE clause.

 CURSOR emp_records IS SELECT salary,first_name,last_name
 FROM employee_details WHERE department_id=emp_deptid
 FOR UPDATE;

b. Look for the comment “INCLUDE EXECUTABLE SECTION OF INNER BLOCK

HERE” and start the executable block.

 BEGIN

c. Only employees working in the departments with department_id 20, 60, 80,100,

and 110 are eligible for raises this quarter. Check if the user has entered any of these
department IDs. If the value does not match, display the message “SORRY, NO
SALARY REVISIONS FOR EMPLOYEES IN THIS DEPARTMENT.” If the value
matches, open the cursor emp_records.

 IF (emp_deptid NOT IN (20,60,80,100,110)) THEN
 DBMS_OUTPUT.PUT_LINE ('SORRY, NO SALARY REVISIONS FOR
 EMPLOYEES IN THIS DEPARTMENT');
 ELSE
 OPEN emp_records;

d. Start a simple loop and fetch the values into emp_sal, emp_fname, and

emp_lname. Use %NOTFOUND for the exit condition.

 LOOP
 FETCH emp_records INTO emp_sal,emp_fname,emp_lname;
 EXIT WHEN emp_records%NOTFOUND;

e. Include a CASE expression. Use the following table as reference for the conditions in

the WHEN clause of the CASE expression.

Note: In your CASE expressions use the constants such as c_range1, c_hike1
that are already declared.

3 >12000

8 > 9500 <12000

15 > 6500 < 9500

20 < 6500

Hike percentage salary

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-29

For example, if the salary of the employee is less than 6500, then increase the salary by
20 percent. In every WHEN clause, concatenate the first_name and last_name of
the employee and store it in the INDEX BY table. Increment the value in variable i so
that you can store the string in the next location. Include an UPDATE statement with the
WHERE CURRENT OF clause.

 CASE
 WHEN emp_sal<c_range1 THEN
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal + (emp_sal*c_hike1)
 WHERE CURRENT OF emp_records;
 WHEN emp_sal<c_range2 THEN
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal+(emp_sal*c_hike2)
 WHERE CURRENT OF emp_records;
 WHEN (emp_sal<c_range3) THEN
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal+(emp_sal*c_hike3)
 WHERE CURRENT OF emp_records;
 ELSE
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal+(emp_sal*c_hike4)
 WHERE CURRENT OF emp_records;
 END CASE;

f. Close the loop. Use the %ROWCOUNT attribute and print the number of records that

were modified. Close the cursor.

 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('NUMBER OF RECORDS MODIFIED :
 '||emp_records%ROWCOUNT);
 CLOSE emp_records;

g. Include a simple loop to print the names of all the employees whose salaries were

revised.
Note: You already have the names of these employees in the INDEX BY table.
Look for the comment “CLOSE THE INNER BLOCK” and include an END IF
statement and an END statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-30

DBMS_OUTPUT.PUT_LINE ('The following employees'' salaries are updated');
 FOR i IN ename_table.FIRST..ename_table.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE(ename_table(i));
 END LOOP;
END IF;
END;

h. Save your script as lab_07_04_soln.sql.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-31

Practice 8

1. The purpose of this example is to show the usage of predefined exceptions. Write a PL/SQL
block to select the name of the employee with a given salary value.

a. Delete all the records in the messages table. Use the DEFINE command to define a
variable sal and initialize it to 6000.

DELETE FROM MESSAGES;
SET VERIFY OFF
DEFINE sal = 6000

b. In the declarative section declare two variables: ename of type
employees.last_name and emp_sal of type employees.salary. Pass
the value of the substitution variables to emp_sal.

DECLARE
 ename employees.last_name%TYPE;
 emp_sal employees.salary%TYPE := &sal;

c. In the executable section retrieve the last names of employees whose salaries are
equal to the value in emp_sal.
Note: Do not use explicit cursors.
If the salary entered returns only one row, insert into the messages table the
employee’s name and the salary amount.

BEGIN
 SELECT last_name
 INTO ename
 FROM employees
 WHERE salary = emp_sal;
 INSERT INTO messages (results)
 VALUES (ename || ' - ' || emp_sal);

d. If the salary entered does not return any rows, handle the exception with an

appropriate exception handler and insert into the messages table the message “No
employee with a salary of <salary>.”

EXCEPTION
 WHEN no_data_found THEN
 INSERT INTO messages (results)
 VALUES ('No employee with a salary of '|| TO_CHAR(emp_sal));

e. If the salary entered returns more than one row, handle the exception with an
appropriate exception handler and insert into the messages table the message
“More than one employee with a salary of <salary>.”

WHEN too_many_rows THEN
 INSERT INTO messages (results)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-32

 VALUES ('More than one employee with a salary of '||
 TO_CHAR(emp_sal));

f. Handle any other exception with an appropriate exception handler and insert into the
messages table the message “Some other error occurred.”

WHEN others THEN
 INSERT INTO messages (results)
 VALUES ('Some other error occurred.');
END;

g. Display the rows from the messages table to check whether the PL/SQL block has

executed successfully. Sample output is as follows:

/
SELECT * FROM messages;

2. The purpose of this example is to show how to declare exceptions with a standard Oracle
Server error. Use the Oracle server error ORA-02292 (integrity constraint violated – child
record found).

a. In the declarative section declare an exception childrecord_exists. Associate
the declared exception with the standard Oracle server error –02292.

SET SERVEROUTPUT ON
DECLARE
 childrecord_exists EXCEPTION;
 PRAGMA EXCEPTION_INIT(childrecord_exists, -02292);

b. In the executable section display “Deleting department 40.....”. Include a DELETE

statement to delete the department with department_id 40.

BEGIN
 DBMS_OUTPUT.PUT_LINE(' Deleting department 40........');
 delete from departments where department_id=40;

c. Include an exception section to handle the childrecord_exists exception and

display the appropriate message. Sample output is as follows:

EXCEPTION
 WHEN childrecord_exists THEN
 DBMS_OUTPUT.PUT_LINE(' Cannot delete this department. There are
employees in this department (child records exist.)');
END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-33

3. Load the script lab_07_04_soln.sql.

a. Observe the declarative section of the outer block. Note that the
no_such_employee exception is declared.

b. Look for the comment “RAISE EXCEPTION HERE.” If the value of emp_id is not
between 100 and 206, then raise the no_such_employee exception.

 IF (emp_id NOT BETWEEN 100 AND 206) THEN
 RAISE no_such_employee;
 END IF;

c. Look for the comment “INCLUDE EXCEPTION SECTION FOR OUTER BLOCK”

and handle the exceptions no_such_employee and too_many_rows. Display
appropriate messages when the exceptions occur. The employees table has only
one employee working in the HR department and therefore the code is written
accordingly. The too_many_rows exception is handled to indicate that the select
statement retrieves more than one employee working in the HR department.

EXCEPTION
 WHEN no_such_employee THEN
 DBMS_OUTPUT.PUT_LINE ('NO EMPLOYEE EXISTS WITH THE
 GIVEN EMPLOYEE NUMBER: PLEASE CHECK');

 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE (' THERE IS MORE THAN ONE
 EMPLOYEE IN THE HR DEPARTMENT. ');

d. Close the outer block.

END;

e. Save your script as lab_08_03_soln.sql.
f. Execute the script. Enter the employee number and the department number and

observe the output. Enter different values and check for different conditions.
The sample output for employee ID 203 and department ID 100 is as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-34

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-35

Practice 9

1. In iSQL*Plus, load the script lab_02_04_soln.sql that you created for exercise 4 of
practice 2.

a. Modify the script to convert the anonymous block to a procedure called greet.

CREATE PROCEDURE greet IS
 today DATE:=SYSDATE;
 tomorrow today%TYPE;
...

b. Execute the script to create the procedure.
c. Save this script as lab_09_01_soln.sql.
d. Click the Clear button to clear the workspace.
e. Create and execute an anonymous block to invoke the procedure greet. Sample

output is as follows:

BEGIN
 greet;
END;

2. Load the script lab_09_01_soln.sql.

a. Drop the procedure greet by issuing the following command:

DROP PROCEDURE greet

b. Modify the procedure to accept an argument of type VARCHAR2. Call the argument

name.

CREATE PROCEDURE greet(name VARCHAR2) IS
 today DATE:=SYSDATE;
 tomorrow today%TYPE;

c. Print Hello <name> instead of printing Hello World.

BEGIN
 tomorrow:=today +1;
 DBMS_OUTPUT.PUT_LINE(' Hello '|| name);

d. Save your script as lab_09_02_soln.sql.
e. Execute the script to create the procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

 Oracle Database 10g: PL/SQL Fundamentals A-36

f. Create and execute an anonymous block to invoke the procedure greet with a
parameter. Sample output is as follows:

BEGIN
 greet('Neema');
END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

B
Table Descriptions

and Data

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-2

ENTITY RELATIONSHIP DIAGRAM

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-3

Tables in the Schema
SELECT * FROM tab;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-4

regions Table
DESCRIBE regions

SELECT * FROM regions;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-5

countries Table
DESCRIBE countries

SELECT * FROM countries;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-6

locations Table
DESCRIBE locations;

SELECT * FROM locations;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-7

departments Table
DESCRIBE departments

SELECT * FROM departments;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-8

jobs Table
DESCRIBE jobs

SELECT * FROM jobs;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-9

employees Table
DESCRIBE employees

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-10

employees Table (continued)
The headings for the commission_pct, manager_id, and department_id columns
are set to comm, mgrid, and deptid in the following screenshot to fit the table values
across the page.
SELECT * FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-11

employees Table (continued)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-12

employees Table (continued)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals B-13

job_history Table
DESCRIBE job_history

SELECT * FROM job_history;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

REF Cursors

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-2

Copyright © 2006, Oracle. All rights reserved.

Cursor Variables

• Cursor variables are like C or Pascal pointers,
which hold the memory location (address) of an
item instead of the item itself.

• In PL/SQL, a pointer is declared as REF X, where
REF is short for REFERENCE and X stands for a
class of objects.

• A cursor variable has the data type REF CURSOR.
• A cursor is static, but a cursor variable is

dynamic.
• Cursor variables give you more flexibility.

Cursor Variables
Cursor variables are like C or Pascal pointers, which hold the memory location (address) of
some item instead of the item itself. Thus, declaring a cursor variable creates a pointer, not
an item. In PL/SQL, a pointer has the data type REF X, where REF is short for REFERENCE
and X stands for a class of objects. A cursor variable has the REF CURSOR data type.
Like a cursor, a cursor variable points to the current row in the result set of a multirow
query. However, cursors differ from cursor variables the way constants differ from variables.
A cursor is static, but a cursor variable is dynamic because it is not tied to a specific query.
You can open a cursor variable for any type-compatible query. This gives you more
flexibility.
Cursor variables are available to every PL/SQL client. For example, you can declare a
cursor variable in a PL/SQL host environment such as an OCI or Pro*C program, and then
pass it as an input host variable (bind variable) to PL/SQL. Moreover, application
development tools such as Oracle Forms and Oracle Reports, which have a PL/SQL engine,
can use cursor variables entirely on the client side. The Oracle server also has a PL/SQL
engine. You can pass cursor variables back and forth between an application and server
through remote procedure calls (RPCs).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-3

Copyright © 2006, Oracle. All rights reserved.

Why Use Cursor Variables?

• You can use cursor variables to pass query result
sets between PL/SQL stored subprograms and
various clients.

• PL/SQL can share a pointer to the query work area
in which the result set is stored.

• You can pass the value of a cursor variable freely
from one scope to another.

• You can reduce network traffic by having a
PL/SQL block open (or close) several host cursor
variables in a single round trip.

Why Use Cursor Variables?
You use cursor variables to pass query result sets between PL/SQL stored subprograms and
various clients. Neither PL/SQL nor any of its clients owns a result set; they simply share a
pointer to the query work area in which the result set is stored. For example, an OCI client,
an Oracle Forms application, and the Oracle server can all refer to the same work area.
A query work area remains accessible as long as any cursor variable points to it. Therefore,
you can pass the value of a cursor variable freely from one scope to another. For example, if
you pass a host cursor variable to a PL/SQL block that is embedded in a Pro*C program, the
work area to which the cursor variable points remains accessible after the block completes.
If you have a PL/SQL engine on the client side, calls from client to server impose no
restrictions. For example, you can declare a cursor variable on the client side, open and fetch
from it on the server side, then continue to fetch from it back on the client side. Also, you
can reduce network traffic by having a PL/SQL block open (or close) several host cursor
variables in a single round trip.
A cursor variable holds a reference to the cursor work area in the PGA instead of addressing
it with a static name. Because you address this area by a reference, you gain the flexibility of
a variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-4

Copyright © 2006, Oracle. All rights reserved.

Defining REF CURSOR Types

Define a REF CURSOR type:
Define a REF CURSOR type
TYPE ref_type_name IS REF CURSOR [RETURN
return_type];

Declare a cursor variable of that type:
ref_cv ref_type_name;

Example
DECLARE
TYPE DeptCurTyp IS REF CURSOR RETURN
departments%ROWTYPE;
dept_cv DeptCurTyp;

Defining REF CURSOR Types
To define a REF CURSOR, you perform two steps. First, you define a REF CURSOR type, and
then you declare cursor variables of that type. You can define REF CURSOR types in any
PL/SQL block, subprogram, or package using the following syntax:
TYPE ref_type_name IS REF CURSOR [RETURN return_type];

in which:
ref_type_name Is a type specifier used in subsequent declarations of cursor

variables
return_type Represents a record or a row in a database table

In the above example, you specify a return type that represents a row in the database table
DEPARTMENT.
REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). As the next example
shows, a strong REF CURSOR type definition specifies a return type, but a weak definition
does not:
DECLARE

TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE; --
strong

TYPE GenericCurTyp IS REF CURSOR; -- weak

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-5

Defining REF CURSOR Types (continued)
Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you
associate a strongly typed cursor variable only with type-compatible queries. However,
weak REF CURSOR types are more flexible because the compiler lets you associate a weakly
typed cursor variable with any query.

Declaring Cursor Variables
After you define a REF CURSOR type, you can declare cursor variables of that type in any
PL/SQL block or subprogram. In the following example, you declare the cursor variable
DEPT_CV:
DECLARE

TYPE DeptCurTyp IS REF CURSOR RETURN departments%ROWTYPE;

dept_cv DeptCurTyp; -- declare cursor variable

Note: You cannot declare cursor variables in a package. Unlike packaged variables, cursor
variables do not have persistent states. Remember, declaring a cursor variable creates a
pointer, not an item. Cursor variables cannot be saved in the database; they follow the usual
scoping and instantiation rules.
In the RETURN clause of a REF CURSOR type definition, you can use %ROWTYPE to specify
a record type that represents a row returned by a strongly (not weakly) typed cursor variable,
as follows:
DECLARE

TYPE TmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;

tmp_cv TmpCurTyp; -- declare cursor variable

TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv%ROWTYPE;

emp_cv EmpCurTyp; -- declare cursor variable

Likewise, you can use %TYPE to provide the data type of a record variable, as the following
example shows:
DECLARE

dept_rec departments%ROWTYPE; -- declare record variable

TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;

dept_cv DeptCurTyp; -- declare cursor variable

In the final example, you specify a user-defined RECORD type in the RETURN clause:
DECLARE

TYPE EmpRecTyp IS RECORD (

empno NUMBER(4),

ename VARCHAR2(1O),

sal NUMBER(7,2));

TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;

emp_cv EmpCurTyp; -- declare cursor variable

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-6

Cursor Variables As Parameters
You can declare cursor variables as the formal parameters of functions and procedures. In
the following example, you define the REF CURSOR type EmpCurTyp, and then declare a
cursor variable of that type as the formal parameter of a procedure:
DECLARE

TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS ...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-7

Copyright © 2006, Oracle. All rights reserved.

Using the OPEN-FOR, FETCH,
and CLOSE Statements

• The OPEN-FOR statement associates a cursor
variable with a multirow query, executes the
query, identifies the result set, and positions the
cursor to point to the first row of the result set.

• The FETCH statement returns a row from the result
set of a multirow query, assigns the values of
select-list items to corresponding variables or
fields in the INTO clause, increments the count
kept by %ROWCOUNT, and advances the cursor to
the next row.

• The CLOSE statement disables a cursor variable.

Using the OPEN-FOR, FETCH, and CLOSE Statements
You use three statements to process a dynamic multirow query: OPEN-FOR, FETCH, and
CLOSE. First, you “open” a cursor variable “for” a multirow query. Then, you “fetch” rows
from the result set one at a time. When all the rows are processed, you “close” the cursor
variable.
Opening the Cursor Variable
The OPEN-FOR statement associates a cursor variable with a multirow query, executes the
query, identifies the result set, positions the cursor to point to the first row of the results set,
then sets the rows-processed count kept by %ROWCOUNT to zero. Unlike the static form of
OPEN-FOR, the dynamic form has an optional USING clause. At run time, bind arguments
in the USING clause replace corresponding placeholders in the dynamic SELECT statement.
The syntax is:

OPEN {cursor_variable | :host_cursor_variable} FOR
dynamic_string

[USING bind_argument[, bind_argument]...];

where CURSOR_VARIABLE is a weakly typed cursor variable (one without a return type),
HOST_CURSOR_VARIABLE is a cursor variable declared in a PL/SQL host environment
such as an OCI program, and dynamic_string is a string expression that represents a
multirow query.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-8

Using the OPEN-FOR, FETCH, and CLOSE Statements (continued)
In the following example, the syntax declares a cursor variable, and then associates it with a
dynamic SELECT statement that returns rows from the employees table:
DECLARE
TYPE EmpCurTyp IS REF CURSOR; -- define weak REF CURSOR
type

emp_cv EmpCurTyp; -- declare cursor variable
my_ename VARCHAR2(15);
my_sal NUMBER := 1000;

BEGIN
OPEN emp_cv FOR -- open cursor variable

'SELECT last_name, salary FROM employees WHERE salary >
:s'

USING my_sal;
...

END;

Any bind arguments in the query are evaluated only when the cursor variable is opened.
Thus, to fetch rows from the cursor using different bind values, you must reopen the cursor
variable with the bind arguments set to their new values.
Fetching from the Cursor Variable
The FETCH statement returns a row from the result set of a multirow query, assigns the
values of select-list items to corresponding variables or fields in the INTO clause,
increments the count kept by %ROWCOUNT, and advances the cursor to the next row. Use the
following syntax:
FETCH {cursor_variable | :host_cursor_variable}

INTO {define_variable[, define_variable]... | record};

Continuing the example, fetch rows from cursor variable EMP_CV into define variables MY_ENAME
and MY_SAL:
LOOP

FETCH emp_cv INTO my_ename, my_sal; -- fetch next row

EXIT WHEN emp_cv%NOTFOUND; -- exit loop when last row is
fetched

-- process row

END LOOP;

For each column value returned by the query associated with the cursor variable, there must
be a corresponding, type-compatible variable or field in the INTO clause. You can use a
different INTO clause on separate fetches with the same cursor variable. Each fetch retrieves
another row from the same result set. If you try to fetch from a closed or never-opened
cursor variable, PL/SQL raises the predefined exception INVALID_CURSOR.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-9

Using the OPEN-FOR, FETCH, and CLOSE Statements (continued)
Closing the Cursor Variable
The CLOSE statement disables a cursor variable. After that, the associated result set is
undefined. Use the following syntax:
CLOSE {cursor_variable | :host_cursor_variable};

In this example, when the last row is processed, close the EMP_CV cursor variable:
LOOP

FETCH emp_cv INTO my_ename, my_sal;

EXIT WHEN emp_cv%NOTFOUND;

-- process row

END LOOP;

CLOSE emp_cv; -- close cursor variable

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises
INVALID_CURSOR.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals C-10

Copyright © 2006, Oracle. All rights reserved.

An Example of Fetching

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
emp_cv EmpCurTyp;
emp_rec employees%ROWTYPE;
sql_stmt VARCHAR2(200);
my_job VARCHAR2(10) := 'ST_CLERK';

BEGIN
sql_stmt := 'SELECT * FROM employees

WHERE job_id = :j';
OPEN emp_cv FOR sql_stmt USING my_job;
LOOP

FETCH emp_cv INTO emp_rec;
EXIT WHEN emp_cv%NOTFOUND;
-- process record

END LOOP;
CLOSE emp_cv;

END;
/

An Example of Fetching
The example in the slide shows that you can fetch rows from the result set of a dynamic
multirow query into a record. First, you must define a REF CURSOR type, EmpCurTyp.
Next, you define a cursor variable emp_cv, of the type EmpcurTyp. In the executable
section of the PL/SQL block, the OPEN-FOR statement associates the cursor variable
EMP_CV with the multirow query, sql_stmt. The FETCH statement returns a row from
the result set of a multirow query and assigns the values of select-list items to EMP_REC in
the INTO clause. When the last row is processed, close the EMP_CV cursor variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Oracle JDeveloper

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-2

Copyright © 2006, Oracle. All rights reserved.

Oracle JDeveloper 10g

Oracle JDeveloper 10g
Oracle JDeveloper 10g is an integrated development environment (IDE) for developing and
deploying Java applications and Web services. It supports every stage of the software
development life cycle (SDLC) from modeling to deploying. It has the features to use the latest
industry standards for Java, XML, and SQL while developing an application.
Oracle JDeveloper 10g initiates a new approach to J2EE development with the features that
enables visual and declarative development. This innovative approach makes J2EE development
simple and efficient.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-3

Copyright © 2006, Oracle. All rights reserved.

Connection Navigator

Connection Navigator
Using Oracle JDeveloper 10g, you can store the information necessary to connect to a database
in an object called “connection.” A connection is stored as part of the IDE settings, and can be
exported and imported for easy sharing among groups of users. A connection serves several
purposes from browsing the database and building applications, all the way through to
deployment. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-4

Copyright © 2006, Oracle. All rights reserved.

Application Navigator

Application Navigator
The Application Navigator gives you a logical view of your application and the data it contains.
The Application Navigator provides an infrastructure that the different extensions can plug into
and use to organize their data and menus in a consistent, abstract manner. While the Application
Navigator can contain individual files (such as Java source files), it is designed to consolidate
complex data. Complex data types such as entity objects, UML diagrams, EJB, or Web services
appear in this navigator as single nodes. The raw files that make up these abstract nodes appear
in the Structure window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-5

Copyright © 2006, Oracle. All rights reserved.

Structure Window

Structure Window
The Structure window offers a structural view of the data in the document currently selected in
the active window of those windows that participate in providing structure: the navigators, the
editors and viewers, and the Property Inspector.
In the Structure window, you can view the document data in a variety of ways. The structures
available for display are based upon document type. For a Java file, you can view code structure,
UI structure, or UI model data. For an XML file, you can view XML structure, design structure,
or UI model data.
The Structure window is dynamic, tracking always the current selection of the active window
(unless you freeze the window’s contents on a particular view), as is pertinent to the currently
active editor. When the current selection is a node in the navigator, the default editor is assumed.
To change the view on the structure for the current selection, select a different structure tab.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-6

Copyright © 2006, Oracle. All rights reserved.

Editor Window

Editor Window
You can view your project files all in one single editor window, you can open multiple views of
the same file, or you can open multiple views of different files.
The tabs at the top of the editor window are the document tabs. Selecting a document tab gives
that file focus, bringing it to the foreground of the window in the current editor.
The tabs at the bottom of the editor window for a given file are the editor tabs. Selecting an
editor tab opens the file in that editor.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-7

Copyright © 2006, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the
following steps:
1. Create a database connection.
2. Create a deployment profile.
3. Deploy the objects.

1 2 3

Deploying Java Stored Procedures
Create a deployment profile for Java stored procedures, and then deploy the classes and,
optionally, any public static methods in JDeveloper using the settings in the profile.
Deploying to the database uses the information provided in the Deployment Profile Wizard and
two Oracle Database utilities:
• loadjava loads the Java class containing the stored procedures to an Oracle database.
• publish generates the PL/SQL call specific wrappers for the loaded public static

methods. Publishing enables the Java methods to be called as PL/SQL functions or
procedures.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-8

Copyright © 2006, Oracle. All rights reserved.

Publishing Java to PL/SQL

Publishing Java to PL/SQL
The slide shows the Java code and how to publish the Java code in a PL/SQL procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-9

Copyright © 2006, Oracle. All rights reserved.

Creating Program Units

Skeleton of the function

Creating Program Units
To create a PL/SQL program unit:

1. Select View > Connection Navigator.
2. Expand Database and select a database connection.
3. In the connection, expand a schema.
4. Right-click a folder corresponding to the object type (Procedures, Packages, Functions).
5. Choose New PL/SQL object_type. The Create PL/SQL dialog box appears for the function,

package, or procedure.
6. Enter a valid name for the function, package, or procedure and click OK.

A skeleton definition will be created and opened in the Code Editor. You can then edit the
subprogram to suit your need.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-10

Copyright © 2006, Oracle. All rights reserved.

Compiling

Compilation with errors

Compilation without errors

Compiling
After editing the skeleton definition, you need to compile the program unit. Right-click the
PL/SQL object that you need to compile in the Connection Navigator and then select Compile.
Alternatively you can also press CTRL + SHIFT + F9 to compile.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-11

Copyright © 2006, Oracle. All rights reserved.

Running a Program Unit

Running a Program Unit
To execute the program unit, right-click the object and click Run. The Run PL/SQL dialog box
will appear. You may need to change the NULL values with reasonable values that are passed
into the program unit. After you change the values, click OK. The output will be displayed in the
Message-Log window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-12

Copyright © 2006, Oracle. All rights reserved.

Dropping a Program Unit

Dropping a Program Unit
To drop a program unit, right-click the object and select Drop. The Drop Confirmation dialog
box will appear; click Yes. The object will be dropped from the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-13

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL Programs

JDeveloper support two types of debugging:
• Local
• Remote

You need the following privileges to perform PL/SQL
debugging:
• DEBUG ANY PROCEDURE

• DEBUG CONNECT SESSION

Debugging PL/SQL Programs
JDeveloper offers both local and remote debugging. A local debugging session is started by
setting breakpoints in source files, and then starting the debugger. Remote debugging requires
two JDeveloper processes: a debugger and a debuggee which may reside on a different
platform.
To debug a PL/SQL program it must be compiled in INTERPRETED mode. You cannot debug a
PL/SQL program that is compiled in NATIVE mode. This mode is set in the database’s
init.ora file.
PL/SQL programs must be compiled with the DEBUG option enabled. This option can be enabled
using various ways. Using SQL*Plus, execute ALTER SESSION SET PLSQL_DEBUG =
true to enable the DEBUG option. Then you can create or recompile the PL/SQL program you
want to debug. Another way of enabling the DEBUG option is by using the following command
in SQL*Plus:

ALTER <procedure, function, package> <name> COMPILE DEBUG;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-14

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL Programs

Debugging PL/SQL Programs (continued)
Before you start with debugging, make sure that the Generate PL/SQL Debug Information check
box is selected. You can access the dialog box by using Tools > Preferences > Database
Connections.
Instead of manually testing PL/SQL functions and procedures as you may be accustomed to
doing from within SQL*Plus or by running a dummy procedure in the database, JDeveloper
enables you to test these objects in an automatic way. With this release of JDeveloper, you can
run and debug PL/SQL program units. For example, you can specify parameters being passed or
return values from a function giving you more control over what is run and providing you output
details about what was tested.
Note: The procedures or functions in the Oracle database can be either stand-alone or within a
package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-15

Debugging PL/SQL Programs (continued)
To run or debug functions, procedures, and packages:

1. Create a database connection using the Database Wizard.
2. In the Navigator, expand the Database node to display the specific database username and

schema name.
3. Expand the Schema node.
4. Expand the appropriate node depending on what you are debugging: Procedure, Function,

or Package body.
5. (Optional for debugging only) Select the function, procedure, or package that you want to

debug and double-click to open it in the Code Editor.
6. (Optional for debugging only) Set a breakpoint in your PL/SQL code by clicking to the left

of the margin.
Note: The breakpoint must be set on an executable line of code. If the debugger does not
stop, the breakpoint may have not been set on an executable line of code (verify that the
breakpoint was set correctly). Also, verify that the debugging PL/SQL prerequisites were
met. In particular, make sure that the PL/SQL program is compiled in the INTERPRETED
mode.

7. Make sure that either the Code Editor or the procedure in the Navigator is currently
selected.

8. Click the Debug toolbar button, or, if you want to run without debugging, click the Run
toolbar button.

9. The Run PL/SQL dialog box is displayed.
- Select a target that is the name of the procedure or function that you want to debug.

Note that the content in the Parameters and PL/SQL Block boxes change dynamically
when the target changes.

Note: You will have a choice of target only if you choose to run or debug a package that
contains more than one program unit.
The Parameters box lists the target’s arguments (if applicable).
The PL/SQL Block box displays code that was custom generated by JDeveloper for the
selected target. Depending on what the function or procedure does, you may need to
replace the NULL values with reasonable values so that these are passed into the
procedure, function, or package. In some cases, you may need to write additional code to
initialize values to be passed as arguments. In this case, you can edit the PL/SQL block text
as necessary.

10. Click OK to execute or debug the target.
11. Analyze the output information displayed in the Log window.

In the case of functions, the return value will be displayed. DBMS_OUTPUT messages will also
be displayed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-16

Copyright © 2006, Oracle. All rights reserved.

Setting Breakpoints

Setting Breakpoints
Breakpoints help you to examine the values of the variables in your program. It is a trigger in a
program that, when reached, pauses program execution allowing you to examine the values of
some or all of the program variables. By setting breakpoints in potential problem areas of your
source code, you can run your program until its execution reaches a location you want to debug.
When your program execution encounters a breakpoint, the program pauses, and the debugger
displays the line containing the breakpoint in the Code Editor. You can then use the debugger to
view the state of your program. Breakpoints are flexible in that they can be set before you begin
a program run or at any time while you are debugging.
To set a breakpoint in the code editor, click the left margin next to a line of executable code.
Breakpoints set on comment lines, blank lines, declaration and any other non-executable lines of
code are not verified by the debugger and are treated as invalid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-17

Copyright © 2006, Oracle. All rights reserved.

Stepping Through Code

Debug Resume

Stepping Through Code
After setting the breakpoint, start the debugger by clicking the Debug icon. The debugger will
pause the program execution at the point where the breakpoint is set. At this point, you can check
the values of the variables. You can continue with the program execution by clicking the Resume
icon. The debugger will then move on to the next breakpoint. After executing all the breakpoints,
the debugger will stop the execution of the program and display the results in the Debugging –
Log area.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-18

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Data window

Examining and Modifying Variables
When the debugging is ON, you can examine and modify the value of the variables using the
Data, Smart Data, and Watches windows. You can modify program data values during a
debugging session as a way to test hypothetical bug fixes during a program run. If you find that a
modification fixes a program error, you can exit the debugging session, fix your program code
accordingly, and recompile the program to make the fix permanent.
You use the Data window to display information about variables in your program. The Data
window displays the arguments, local variables, and static fields for the current context, which is
controlled by the selection in the Stack window. If you move to a new context, the Data window
is updated to show the data for the new context. If the current program was compiled without
debug information, you will not be able to see the local variables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-19

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Smart Data window

Examining and Modifying Variables (continued)
Unlike the Data window that displays all the variables in your program, the Smart Data window
displays only the data that is relevant to the source code that you are stepping through.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-20

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Watches window

Examining and Modifying Variables (continued)
A watch enables you to monitor the changing values of variables or expressions as your program
runs. After you enter a watch expression, the Watch window displays the current value of the
expression. As your program runs, the value of the watch changes as your program updates the
values of the variables in the watch expression.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-21

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Stack window

Examining and Modifying Variables (continued)
You can activate the Stack window by using View > Debugger > Stack. It displays the call stack
for the current thread. When you select a line in the Stack window, the Data window, Watch
window, and all other windows are updated to show data for the selected class.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals D-22

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Classes window

Examining and Modifying Variables (continued)
The Classes window displays all the classes that are currently being loaded to execute the
program. If used with Oracle Java Virtual Machine (OJVM), it also shows the number of
instances of a class and the memory used by those instances.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Copyright © 2006, Oracle. All rights reserved.

Using SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-2

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do
the following:
• List the key features of Oracle SQL Developer
• Install Oracle SQL Developer
• Identify menu items of Oracle SQL Developer
• Create a database connection
• Manage database objects
• Use the SQL Worksheet
• Execute SQL statements and SQL scripts
• Edit and Debug PL/SQL statements
• Create and save reports

Objectives
This appendix introduces the graphical tool SQL Developer that simplifies your database
development tasks. You learn how to use SQL Worksheet to execute SQL statements and SQL
scripts. You also learn how to edit and debug PL/SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-3

Copyright © 2006, Oracle. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a graphical tool that
enhances productivity and simplifies database
development tasks.

• You can connect to any target Oracle database
schema using standard Oracle database
authentication.

SQL Developer

What Is Oracle SQL Developer?
Oracle SQL Developer is a free graphical tool designed to improve your productivity and simplify
the development of every-day database tasks. With just a few clicks, you can easily create and debug
stored procedures, test SQL statements, and view optimizer plans.
SQL Developer, the visual tool for database development, simplifies the following tasks:

• Browsing and managing database objects
• Executing SQL statements and scripts
• Editing and debugging PL/SQL statements
• Creating reports

You can connect to any target Oracle database schema using standard Oracle database authentication.
Once connected, you can perform operations on objects in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-4

Copyright © 2006, Oracle. All rights reserved.

Key Features

• Developed in Java
• Supports Windows,Linux and Mac OS X platforms
• Default connectivity by using the JDBC Thin driver
• Does not require an installer
• Connects to any Oracle Database version 9.2.0.1 and

later
• Bundled with JRE 1.5

Key Features of SQL Developer
Oracle SQL Developer is developed in Java leveraging the Oracle JDeveloper IDE. The tool runs on
Windows, Linux, and Mac OS X platforms. You can install SQL Developer on the Database Server
and connect remotely from your desktop, thus avoiding client server network traffic.
Default connectivity to the database is through the JDBC Thin driver so, no Oracle Home is required.
SQL Developer does not require an installer and you need to simply unzip the downloaded file.
With SQL Developer, users can connect to Oracle Databases 9.2.0.1 and later, and all Oracle
database editions including Express Edition. SQL Developer is bundled with JRE 1.5, with an
additional tools.jar to support Windows clients. Non-Windows clients only need JDK 1.5.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-5

Copyright © 2006, Oracle. All rights reserved.

Installing SQL Developer

Download Oracle SQL Developer kit and unzip into any
directory on your machine

Installing SQL Developer
Oracle SQL Developer does not require an installer. To install SQL Developer, you need an unzip
tool.
To install SQL Developer, perform the following steps:

1. Create a folder as <local drive>:\SQL Developer.
2. Download the SQL Developer kit from

http://www.oracle.com/technology/software/products/sql/index.html
3. Unzip the downloaded SQL Developer kit into the folder created in step 1.

To start SQL Developer, go to <local drive>:\SQL Developer, and double-click
sqldeveloper.exe.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-6

Copyright © 2006, Oracle. All rights reserved.

Menus for SQL Developer

1

2

3

4

5

6

Menus for SQL Developer
SQL Developer has two main navigation tabs.

• Connections Navigator: By using this tab, you can browse database objects and users to which
you have access.

• Reporting Tab: By using this tab, you can run predefined reports or create and add your own
reports.

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the appearance and
behavior of SQL Developer by setting preferences.
The menus at the top contain standard entries, plus entries for features specific to SQL Developer.

1. View: Contains options that affect what is displayed in the SQL Developer interface
2. Navigate: Contains options for navigating to panes and in the execution of sub programs
3. Run: Contains the Run File and Execution Profile options, which are relevant when a function

or procedure is selected
4. Debug: Contains options relevant when a function or procedure is selected
5. Source: Contains options for use when editing functions and procedures
6. Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL Worksheet

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-7

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

• You must have at least one database connection to
use SQL Developer

• You can create and test connections
– For multiple databases
– For multiple schemas

• SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

• You can export connections to an XML file
• Each additional database connection created is listed

in the connections navigator hierarchy

Creating a Database Connection
A connection is a SQL Developer object that specifies the necessary information for connecting to a
specific database as a specific user of that database. To use SQL Developer, you must have at least
one database connection, which may be existing, created, or imported.
You can create and test connections for multiple databases and for multiple schemas.
By default, the tnsnames.ora file is located in the $ORACLE_HOME/network/admin
directory. But, it can also be in the directory specified by the TNS_ADMIN environment variable
or registry value. When you start SQL Developer and display the database connections dialog box,
SQL Developer automatically imports any connections defined in the tnsnames.ora file on your
system.
Note: On Windows systems, if the tnsnames.ora file exists but its connections are not being used by
SQL Developer, define TNS_ADMIN as a system environment variable.
You can export connections to an XML file so that you can reuse later.
You can create additional connections as different users to the same database or to connect to the
different databases.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-8

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

Creating a Database Connection (continued)
To create a database connection, perform the following steps:

1. Double-click <your_path>\sqldeveloper\sqldeveloper.exe.
2. In the Connections tab, right-click Connections and select New Database Connection.
3. Enter the connection name, username, password, hostname, and SID for the database you want

to connect.
4. Click Test to make sure that the connection has been set correctly.
5. Click Connect.

In the basic tabbed page, at the bottom, fill in the following options:
• Hostname: the Host system for the Oracle database
• Port: Listener port
• SID: Database name
• Service Name: Network service name for a remote database connection

If you select the Save Password check box, the password is saved to an XML file. So, once you close
SQL Developer connection and open again, you will not be prompted for the password.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-9

Copyright © 2006, Oracle. All rights reserved.

Browsing Database Objects

Use the Database Navigator to:
• Browse through many objects in a database schema
• Review the definitions of objects at a glance

Browsing Database Objects
Once you have created a database connection, you can use the Database Navigator to browse through
many objects in a database schema including Tables, Views, Indexes, Packages, Procedures,
Triggers, Types, and so on.
SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about the selected objects. You can customize many aspects of the appearance of
SQL Developer by setting preferences.
You can see the definition of the objects broken into tabs of information that is pulled out of the data
dictionary. For example, if you select a table in the Navigator, the details about columns, constraints,
grants, statistics, triggers and more are all displayed in an easy to read tabbed window.
If you want to see the definition of EMPLOYEES table as shown on the slide, perform the following
steps:

1. Expand the connection node in the Connections Navigator
2. Expand Tables.
3. Double-click EMPLOYEES.

Using the Data tab, you can enter new rows, update data and commit these changes to the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-10

Copyright © 2006, Oracle. All rights reserved.

Creating a Schema Object

• SQL Developer supports the creation of any schema
object by:
– Executing a SQL statement in the SQL Worksheet
– Using the context menu

• Edit the objects using an edit dialog or one of many
context sensitive menus

• View the DDL for adjustments such as creating a new
object or editing an existing schema object

Creating a Schema Object
SQL Developer supports the creation of any schema object by executing a SQL statement in the SQL
Worksheet. Alternatively, you can create objects using the context menus. Once created, you can edit
the objects using an edit dialog or one of many context sensitive menus.
As new objects are created or existing objects are edited, the DDL for those adjustments is available
for review. An Export DDL option is available if you want to create the full DDL for one or more
objects in the schema.
The slide shows creating a table using the context menu. To open a dialog box for creating a new
table, right-click Tables and select Create TABLE. The dialog boxes for creating and editing
database objects have multiple tabs, each reflecting a logical grouping of properties for that type of
object.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-11

Copyright © 2006, Oracle. All rights reserved.

Creating a New Table: Example

Creating a New Table: Example
In the Create Table dialog box, if you do not select the Show Advanced Options check box, you can
create a table quickly by specifying columns and some frequently used features.
If you select the Show Advanced Options check box, the Create Table dialog box changes to one
with multiple tabs, in which you can specify an extended set of features while creating the table.
The example in the slide shows creating the DEPENDENTS table by selecting the Show Advanced
Options check box.
To create a new table, perform the following steps:

1. In the Connections Navigator, right-click Tables.
2. Select Create TABLE.
3. In the Create Table dialog box, select Show Advanced Options.
4. Specify column information.
5. Click OK.

Although it is not required, you should also specify a primary key using the Primary Key tab in the
dialog box. Sometimes, you may want to edit the table that you have created. To edit a table, right-
click the table in the connections navigator, and select Edit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-12

Copyright © 2006, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements

• Specify any actions that can be processed by the
database connection associated with the worksheet

Using the SQL Worksheet
When you connect to a database, a SQL Worksheet window for that connection is automatically
opened. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the database.
You can specify any actions that can be processed by the database connection associated with the
worksheet, such as:

• Creating a table
• Inserting data
• Creating and editing a trigger
• Selecting data from a table
• Saving the selected data to a file

You can display a SQL Worksheet by using any of the following two options:
• Select Tools > SQL Worksheet
• Click the Open SQL Worksheet icon.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-13

Copyright © 2006, Oracle. All rights reserved.

Using the SQL Worksheet

1

2

3

4

5

6

7 8

Using the SQL Worksheet (continued)
You may want to use short cut keys or icons to perform certain tasks such as executing a SQL
statement, running a script, and viewing the history of SQL statements that you have executed. You
can use the SQL Worksheet toolbar that contains icons to perform the following tasks:

1. Execute Statement: Executes the statement at the mouse pointer in the Enter SQL Statement
box. You can use bind variables in the SQL statements but not substitution variables.

2. Run Script: Executes all statements in the Enter SQL Statement box using the Script Runner.
You can use substitution variables in the SQL statements but not bind variables.

3. Commit: Writes any changes to the database, and ends the transaction.
4. Rollback: Discards any changes to the database, without writing them to the database, and ends

the transaction.
5. Cancel: Stops the execution of any statements currently being executed.
6. SQL History: Displays a dialog box with information about SQL statements that you have

executed.
7. Execute Explain Plan: Generates the execution plan, which you can see by clicking the

Explain tab.
8. Clear: Erases the statement or statements in the Enter SQL Statement box.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-14

Copyright © 2006, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or
multiple SQL statements

Executing SQL Statements
In the SQL Worksheet, you can use the Enter SQL Statement box to type a single or multiple SQL
statements. For a single statement, the semicolon at the end is optional.
When you type in the statement, the SQL keywords are automatically highlighted. To execute a SQL
statement, ensure that your cursor is within the statement and click the Execute Statement icon.
Alternatively, you can press the F9 key.
To execute multiple SQL statements and see the results, click the Run Script icon. Alternatively,
you can press the F5 key.
In the example in the slide, as there are multiple SQL statements, the first statement is terminated
with a semicolon. The cursor is in the first statement and so when the statement is executed, results
corresponding to the first statement are displayed in the Results box.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-15

Copyright © 2006, Oracle. All rights reserved.

Viewing the Execution Plan

Viewing the Execution Plan
You can execute a SQL script, and view the execution plan. To execute a SQL script file, perform the
following steps:

1. Right-click in the Enter SQL Statement box, and select Open File from the drop down menu.
2. In the Open dialog box, double-click the .sql file.
3. Click the Run Script icon.

Once you double-click the .sql file, the sql statements are loaded into the Enter SQL Statement
box. You can execute the script or each line individually. The results are displayed in the Script
Output area.
The example in the slide shows the execution plan. The Execute Explain Plan icon generates the
execution plan. An execution plan is the sequence of operations that will be performed to execute the
statement. You can see the execution plan by clicking the Explain tab.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-16

Copyright © 2006, Oracle. All rights reserved.

Formatting SQL Code

Before
formatting

After
formatting

Formatting SQL Code
You may want to enhance the indentation, spacing, capitalization, and line separation of SQL code.
SQL Developer enables you to format SQL code.
To format SQL code, right-click in the statement area, and select Format SQL.
In the example in the slide, before formatting, the SQL code has the key words not capitalized and
the statement is not properly indented. After formatting, the SQL code is enhanced with the
keywords capitalized and the statement properly indented.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-17

Copyright © 2006, Oracle. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax or
examples

Using Snippets
You may want to use certain code fragments when you are using the SQL Worksheet or creating or
editing a PL/SQL function or procedure. SQL Developer has the Snippets feature. Snippets are code
fragments, such as SQL functions, Optimizer hints, and miscellaneous PL/SQL programming
techniques. You can drag and drop snippets into the editor window.
To display Snippets, select View > Snippets.
The snippets window is displayed on the right side. You can use the drop down list to select a group.
A snippets button is placed in the right window margin, so that you can display the snippets window
if it becomes hidden.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-18

Copyright © 2006, Oracle. All rights reserved.

Using Snippets: Example

Inserting a
snippet

Editing the
snippet

Using Snippets: Example
To insert a snippet into your code in a SQL Worksheet or in a PL/SQL function or procedure, drag
the snippet from the Snippets window and drop it into the desired place in your code. Then you can
edit the syntax so that the SQL function is valid in the current context. To see a brief description of a
SQL function in a tool tip, hold the pointer over the function name.
The example in the slide shows that CONCAT(char1, char2) is dragged from the Character
Functions group in the Snippets window. Then the CONCAT function syntax is edited and rest of the
statement is added as follows:

SELECT CONCAT(first_name, last_name)
FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-19

Copyright © 2006, Oracle. All rights reserved.

Using SQL*Plus

• The SQL Worksheet does not support all SQL*Plus
statements

• You can invoke the SQL*Plus command-line interface
from SQL Developer

Using SQL*Plus
The SQL Worksheet supports some SQL*Plus statements. SQL*Plus statements must be interpreted
by the SQL Worksheet before being passed to the database; any SQL*Plus statements that are not
supported by the SQL Worksheet are ignored and not passed to the database.
To display the SQL*Plus command window, select SQL*Plus from the Tools menu.
To use this feature, the system on which you are using SQL Developer must have an Oracle Home
directory or folder, with a SQL*Plus executable under that location. If the location of the SQL*Plus
executable is not already stored in your SQL Developer preferences, you are asked to specify its
location.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-20

Copyright © 2006, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of
DBMS_OUTPUT package statements.

Creating an Anonymous Block
You can create an anonymous block and display the output of DBMS_OUTPUT package statements.
To create an anonymous block and view the results, perform the following steps:

1. Enter the PL/SQL code in the Enter SQL Statement box.
2. Click the DBMS Output pane. Then click the Enable DBMS Output icon to set the server

output ON.
3. Click the Execute Statement icon above the Enter SQL Statement box. Then click the DBMS

Output pane to see the results.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 S
Q

L
St

ar
 In

te
rn

at
io

na
l L

im
ite

d
us

e
on

ly
ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-21

Copyright © 2006, Oracle. All rights reserved.

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units:

Editing the PL/SQL Code
You may want to make changes to your PL/SQL code. SQL Developer includes a full-featured editor
for PL/SQL program units. It includes customizable PL/SQL syntax highlighting in addition to
common editor functions such as:

• Bookmarks
• Code Completion
• Code Folding
• Search and Replace

To edit the PL/SQL code, click the object name in the Connections navigator, and then click the Edit
icon. Optionally, double-click the object name to invoke the object definition page with its tabs and
the Edit page. You can update only if you are in the Edit tab.
The Code Insight feature is shown on the slide. For example, if you type DBMS_OUTPUT. and then
press [Ctrl] + [Space], you can select from a list of members of that package. Note that by default,
Code Insight is invoked automatically if you pause after typing a period (.) for more than one second.
When using the Code Editor to edit PL/SQL code, you can “Compile” or “Compile for Debug.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-22

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Procedure

1

2

Creating a PL/SQL Procedure
Using SQL Developer, you can create PL/SQL functions, procedures, and packages. To create a
Pl/SQL procedure, perform the following steps:

1. Right-click the Procedures node in the Connections Navigator to invoke the context menu, and
select Create Procedure.

2. In the Create Procedure dialog box, specify the procedure information and click OK.
Note: Ensure that you press Enter before you click OK.
In the example in the slide, the EMP_LIST procedure is created. The default values for parameter
name and parameter type are replaced with pMaxRows and NUMBER respectively.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-23

Copyright © 2006, Oracle. All rights reserved.

Compiling a PL/SQL Procedure

Compiling a PL/SQL Procedure
Once you specify the parameter information in the Create Procedure dialog box and click OK, you
see the procedure tab added in the right window. You can then replace the Anonymous block with
your PL/SQL code.
To compile the PL/SQL subprogram, click the Save button in the toolbar. If you expand Procedures
in the Connections Navigator, you can see that the procedure node is added.
When an invalid PL/SQL subprogram is detected by SQL Developer, the status is indicated with a
red X over the icon for the subprogram in the Connections Navigator. Compilation errors are shown
in the log window. You can navigate to the line reported in the error by simply double-clicking on
the error. SQL Developer also displays errors and hints in the right hand gutter. If you hover each of
the red bars in the gutter, the error message displays. For example, if the error messages indicate that
there is a formatting error, modify the code accordingly and click the Compile icon.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-24

Copyright © 2006, Oracle. All rights reserved.

Running a PL/SQL Procedure

Running a PL/SQL Procedure
Once you have created and compiled a PL/SQL procedure, you can run it using SQL Developer. To
run a PL/SQL procedure, right-click the procedure name in the left navigator and select Run.
Optionally, you can use the Run button in the right window. This invokes the Run PL/SQL dialog
box. The Run PL/SQL dialog box allows you to select the target procedure or function to run and
displays a list of parameters for the selected target.
You can use the PL/SQL block area to populate parameters to be passed to the program unit and to
handle complex return types. Once you make the necessary changes in the Run PL/SQL dialog box,
click OK. You see the expected results in the Running-Log window.
In the example in the slide, PMAXROWS := NULL; is changed to PMAXROWS := 5;
The results of the five rows returned are displayed in the Running-Log window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-25

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL

Debugging PL/SQL
You may want to debug a PL/SQL function, procedure or package. SQL Developer provides full
support for PL/SQL debugging. To debug a function or procedure, perform the following steps:

1. Click the object name in the Connections navigator
2. Right-click the object and select Compile for debug.
3. Click the Edit icon. Then click the Debug icon above its source listing.

If the toggle numbers before each line of code is not yet displayed, right-click in the Code Editor
margin and select Toggle Line Numbers.
The PL/SQL debugger supplies many commands to control program execution including Step Into,
Step Over, Step Out, Run to Cursor, and so on. While the debugger is paused, you can examine and
modify the values of variables from the Smart Data, Watches or Inspector windows.
The Breakpoints window lists the defined breakpoints. You can use this window to add new
breakpoints, or customize the behavior of existing breakpoints.
Note: For PL/SQL debugging, you need the debug any procedure and debug connect
session privileges.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-26

Copyright © 2006, Oracle. All rights reserved.

Database Reporting

SQL Developer provides a number of predefined reports
about the database and its objects:

Database Reporting
SQL Developer provides many reports about the database and its objects. These reports can be
grouped into the following categories:

• About Your Database reports
• Database Administration reports
• Table reports
• PL/SQL reports
• Security reports
• XML reports
• Jobs reports
• Streams reports
• All Objects reports
• Data Dictionary reports
• User Defined reports

To display reports, click the Reports tab on the left side of the window. Individual reports are
displayed in tabbed panes on the right side of the window; and for each report, you can select (in a
drop-down control) the database connection for which to display the report. For reports about objects,
the objects shown are only those visible to the database user associated with the selected database
connection, and the rows are usually ordered by Owner.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-27

Copyright © 2006, Oracle. All rights reserved.

Creating a User Defined Report

Create and save user-defined reports for repeated use:

Creating a User Defined Report
User Defined reports are any reports that are created by SQL Developer users. To create a user-
defined report, perform the following steps:

1. Right-click the User Defined Reports node under Reports, and select Add Report.
2. In the Create Report Dialog box, specify the report name and the SQL query to retrieve

information for the report. Then click Apply.
In the example in the slide, the report name is specified as emp_sal. An optional description is
provided indicating that the report contains details of employees with salary >= 10000. The complete
SQL statement for retrieving the information to be displayed in the user-defined report is specified in
the SQL box. You can also include an optional tool tip to be displayed when the mouse pointer stays
briefly over the report name in the Reports navigator display.
You can organize user-defined reports in folders, and you can create a hierarchy of folders and
subfolders. To create a folder for user-defined reports, right-click the User Defined node or any
folder name under that node and select Add Folder.
Information about user-defined reports, including any folders for these reports, is stored in a file
named UserReports.xml under the directory for user-specific information.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals E-28

Copyright © 2006, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:
• Browse, create, and edit database objects
• Execute SQL statements and scripts in the SQL

Worksheet
• Edit and debug PL/SQL statements
• Create and save custom reports

Summary
SQL Developer is a free graphical tool to simplify database development tasks. Using SQL
Developer, you can browse, create, and edit database objects. You can use the SQL Worksheet to run
SQL statements and scripts. Using SQL Developer, you can edit and debug PL/SQL.
SQL Developer enables you to create and save your own special set of reports for repeated use.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Index

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals Index-2

%

%ROWTYPE attribute 06-02 06-09

%TYPE attribute 02-02 02-21 06-07

A

active set 07-04 07-05

anonymous 01-11 01-13 01-19 02-07

B

BEGIN 01-09 01-11 02-07

benefits of PL/SQL 01-02 01-06

bind variables 02-25 02-27

block types 01-11

Boolean 02-09 02-14 02-24

C

CASE 05-03 05-10

CLOSE 07-05 07-13 07-19

collections 02-33 06-03

comments 03-03 03-06

composite data type 02-09 02-33 06-03

CONSTANT 02-06 02-11 02-20

Creating a Database Connection E-7

Creating a User Defined Report E-27

cursor 04-19 07-03 07-06

cursor attributes 04-21 07-17

cursor FOR loop 07-15 07-20

D

DBMS_OUTPUT 01-21 02-07

Debugging PL/SQL E-25

DECLARE 01-09 02-06

DEFAULT 02-06 02-11

DML 04-03 04-13

E

Editing the PL/SQL Code E-21

ELSE 05-04 05-07

ELSIF 05-04 05-06

END 01-09 02-07

END IF 05-04

Enterprise Manager I-08 I-11

environment 01-02 01-05 01-15

exception handler 08-05 08-10

Execution Plan E-15

EXIT 05-17

explicit cursor 04-20 07-03

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals Index-3

F

FETCH 07-05 07-10

FOR 05-03 05-17 07-15

FOR UPDATE 07-23

functions 01-13 03-07 09-09

G

grid I-08

H

hr schema I-06

I

identifiers 02-04 02-06 02-12

IF 05-03 05-06

IF THEN ELSE 05-07

implicit cursor 04-19 07-03

INDEX BY table 06-03 06-15 06-18

INTO 04-05 04-07

invoking the function 09-11 09-13

invoking the procedure 09-08

iSQL*Plus 01-16

L

loop 05-03 05-17

N

nested blocks 03-12

O

OPEN 07-05 07-09

OTHERS 08-08 08-10

output 01-21

P

passing parameter 09-12

PL/SQL block structure 01-09

PRAGMA 08-14 08-21

predefined Oracle server error 08-11

PRINT 01-21 02-25

procedures 09-03 09-05

PROMPT 02-29

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

Oracle Database 10g: PL/SQL Fundamentals Index-4

Q

qualify an identifier 03-16

R

RAISE_APPLICATION_ERROR 08-22

S

SQL Developer E-3

scalar data type 02-09 02-13

Snippets E-17

SQL%FOUND 04-21

SQL%NOTFOUND 04-21 08-19

SQL%ROWCOUNT 04-21 07-09 09-06

SQLCODE 08-16

SQLERRM 08-15

SQL Worksheet E-15

subprograms 02-03 09-03

substitution variables 02-29

V

variable declaration 02-20

visibility 03-14

W

WHERE CURRENT OF 07-25 07-27

WHILE 05-17 05-20

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 S

Q
L

St
ar

 In
te

rn
at

io
na

l L
im

ite
d

us
e

on
ly

ฺ

Development Program (WDP) eKit materials are provided for WDP in-class use only. Copying eKit materials is strictly prohibited and is in
violation of Oracle copyright. All WDP students must receive an eKit watermarked with their name and email. Contact
OracleWDP_ww@oracle.com if you have not received your personalized eKit.

	Cover Page
	Table of Contents
	Preface
	Introduction
	Objectives
	Course Objectives
	Course Agenda
	Human Resources (hr) Data Set
	Oracle10g Grid Infrastructure
	Oracle Database 10g
	Oracle Application Server 10g
	Oracle Enterprise Manager 10g
Grid Control
	Oracle Internet Platform
	Summary
	Course Practices

	Lesson 1: Introduction to PL/SQL
	Objectives
	What Is PL/SQL?
	About PL/SQL
	PL/SQL Environment
	Benefits of PL/SQL
	PL/SQL Block Structure
	Block Types
	Program Constructs
	PL/SQL Programming Environments
	iSQL*Plus Architecture
	Create an Anonymous Block
	Execute an Anonymous Block
	Test the Output of a PL/SQL Block
	Summary
	Practice 1: Overview
	Practice 1

	Lesson 2: Declaring PL/SQL Variables
	Objectives
	Use of Variables
	Identifiers
	Handling Variables in PL/SQL
	Declaring and Initializing PL/SQL Variables
	Delimiters in String Literals
	Types of Variables
	Guidelines for Declaring and Initializing PL/SQL Variables
	Guidelines for Declaring PL/SQL Variables
	Scalar Data Types
	Base Scalar Data Types
	BINARY_FLOATand BINARY_DOUBLE
	Declaring Scalar Variables
	%TYPEAttribute
	Declaring Variables with the %TYPEAttribute
	Declaring Boolean Variables
	Bind Variables
	Printing Bind Variables
	Substitution Variables
	Prompt for Substitution Variables
	Using DEFINE for a User Variable
	Composite Data Types
	LOB Data Type Variables
	Summary
	Practice 2: Overview
	Practice 2

	Lesson 3: Writing Executable Statements
	Objectives
	Lexical Units in a PL/SQL Block
	PL/SQL Block Syntax and Guidelines
	Commenting Code
	SQL Functions in PL/SQL
	SQL Functions in PL/SQL: Examples
	Data Type Conversion
	Nested Blocks
	Variable Scope and Visibility
	Qualify an Identifier
	Determining Variable Scope
	Operators in PL/SQL
	Programming Guidelines
	Indenting Code
	Summary
	Practice 3: Overview
	Practice 3

	Lesson 4: Interacting withthe Oracle Server
	Objectives
	SQL Statements in PL/SQL
	SELECTStatements in PL/SQL
	Retrieving Data in PL/SQL
	Naming Conventions
	Manipulating Data Using PL/SQL
	Inserting Data
	Updating Data
	Deleting Data
	Merging Rows
	SQL Cursor
	SQL Cursor Attributes for Implicit Cursors
	Summary
	Practice 4: Overview
	Practice 4

	Lesson 5: Writing Control Structures
	Objectives
	Controlling Flow of Execution
	IFStatements
	Simple IFStatement
	IF THEN ELSEStatement
	IF ELSIF ELSEClause
	NULLValues in IFStatements
	CASEExpressions
	CASEExpressions: Example
	Searched CASEExpressions
	CASEStatement
	Handling Nulls
	Logic Tables
	Boolean Conditions
	Iterative Control: LOOPStatements
	Basic Loops
	WHILELoops
	FORLoops
	Guidelines for Loops
	Nested Loops and Labels
	Summary
	Practice 5: Overview
	Practice 5

	Lesson 6: Working with Composite Data Types
	Objectives
	Composite Data Types
	PL/SQL Records
	Creating a PL/SQL Record
	PL/SQL Record Structure
	%ROWTYPEAttribute
	Advantages of Using %ROWTYPE
	%ROWTYPEAttribute
	Inserting a Record by Using %ROWTYPE
	Updating a Row in a Table by Using a Record
	INDEX BYTables or Associative Arrays
	Creating an INDEX BYTable
	INDEX BYTable Structure
	Creating an INDEX BYTable
	Using INDEX BYTable Methods
	INDEX BYTable of Records
	INDEX BYTable of Records: Example
	Nested Tables
	VARRAY
	Summary
	Practice 6: Overview
	Practice 6

	Lesson 7: Using Explicit Cursors
	Objectives
	Cursors
	Explicit Cursor Operations
	Controlling Explicit Cursors
	Declaring the Cursor
	Opening the Cursor
	Fetching Data from the Cursor
	Closing the Cursor
	Cursors and Records
	Cursor FORLoops
	Explicit Cursor Attributes
	%ISOPENAttribute
	%ROWCOUNTand %NOTFOUND: Example
	Cursor FORLoops Using Subqueries
	Cursors with Parameters
	FOR UPDATEClause
	WHERE CURRENT OFClause
	Cursors with Subqueries
	Summary
	Practice 7: Overview
	Practice 7

	Lesson 8: Handling Exceptions
	Objectives
	Example of an Exception
	Handling Exceptions with PL/SQL
	Handling Exceptions
	Exception Types
	Trapping Exceptions
	Guidelines for Trapping Exceptions
	Trapping Predefined Oracle Server Errors
	Trapping Non-Predefined Oracle Server Errors
	Non-Predefined Error
	Functions for Trapping Exceptions
	Trapping User-Defined Exceptions
	Calling Environments
	Propagating Exceptions in a Subblock
	RAISE_APPLICATION_ERRORProcedure
	Summary
	Practice 8: Overview
	Practice 8

	Lesson 9: Creating Stored Procedures and Functions
	Objectives
	Procedures and Functions
	Differences Between Anonymous Blocks and Subprograms
	Procedure: Syntax
	Procedure: Example
	Invoking the Procedure
	Function: Syntax
	Function: Example
	Invoking the Function
	Passing a Parameter to the Function
	Invoking the Function with a Parameter
	Summary
	Practice 9: Overview
	Practice 9

	Appendix A: Practice Solutions
	Practice 1
	Practice 2
	Practice 3
	Practice 4
	Practice 5
	Practice 6
	Practice 7
	Practice 8
	Practice 9

	Appendix B: Table Descriptions and Data
	Appendix C: REF Cursors
	Cursor Variables
	Why Use Cursor Variables?
	Defining REF CURSOR Types
	Using the OPEN-FOR, FETCH,
and CLOSE Statements
	An Example of Fetching

	Appendix D: Oracle JDeveloper
	Oracle JDeveloper 10g
	Connection Navigator
	Application Navigator
	Structure Window
	Editor Window
	Deploying Java Stored Procedures
	Publishing Java to PL/SQL
	Creating Program Units
	Compiling
	Running a Program Unit
	Dropping a Program Unit
	Debugging PL/SQL Programs
	Setting Breakpoints
	Stepping Through Code
	Examining and Modifying Variables

	Appendix E: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Key Features
	Installing SQL Developer
	Menus for SQL Developer
	Creating a Database Connection
	Browsing Database Objects
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Viewing the Execution Plan
	Formatting SQL Code
	Using Snippets
	Using Snippets: Example
	Using SQL*Plus
	Creating an Anonymous Block
	Editing the PL/SQL Code
	Creating a PL/SQL Procedure
	Compiling a PL/SQL Procedure
	Running a PL/SQL Procedure
	Debugging PL/SQL
	Database Reporting
	Creating a User Defined Report
	Summary

	Index

